Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 22 2020 04:12:05
%S 1,1,1,2,4,7,11,17,28,48,80,128,204,332,545,887,1432,2313,3750,6086,
%T 9859,15944,25788,41749,67604,109415,177017,286409,463495,750081,
%U 1213713,1963771,3177444,5141446,8319390,13461189,21780519,35241682
%N The q-exponential of x, e_q(x,q), evaluated at q = -x.
%C The g.f.s for this sequence illustrate the following formula:
%C log(e_q(x,q)) = Sum_{n>=1} (1-q)^n/(1-q^n)*x^n/n, where
%C e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential of x and
%C faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.
%H Seiichi Manyama, <a href="/A152398/b152398.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein, <a href="http://mathworld.wolfram.com/q-ExponentialFunction.html">q-Exponential Function</a> from MathWorld.
%H Eric Weisstein, <a href="http://mathworld.wolfram.com/q-Factorial.html">q-Factorial</a> from MathWorld.
%F G.f.: e_q(x,-x) = Sum_{n>=0} x^n/(Product_{k=1..n} (1-(-x)^k)/(1+x)).
%F G.f.: e_q(x,-x) = exp( Sum_{n>=1} x^n*(1+x)^n/(1-(-x)^n)/n ).
%F G.f.: 1/Product_{k>0} 1+(1+x)*(-x)^k. - _Vladeta Jovovic_, Dec 19 2008
%F a(n) ~ c/r^n where r = (sqrt(5) - 1)/2 = 0.6180339887... and c = 0.652419554233497352459208493304650..., where e_q(-r,r) = 0.887276226980250304353751667447441... - _Paul D. Hanna_, Dec 20 2008
%F c = 1 / (r * sqrt(5) * QPochhammer((1-sqrt(5))/2)). - _Vaclav Kotesovec_, Oct 22 2020
%e G.f.: e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + ...
%e log(e_q(x,-x)) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 16*x^5/5 + 22*x^6/6 + ... (A152399).
%o (PARI) a(n)=polcoeff(sum(k=0,n,x^k/(prod(j=1,k,(1-(-x)^j)/(1+x))+x*O(x^n))),n)
%o (PARI) a(n)=polcoeff(exp(sum(k=1,n,x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)),n)
%o (PARI) {a(n)=polcoeff(1/prod(k=1,n,1+(1+x)*(-x)^k+x*O(x^n)),n)} \\ _Paul D. Hanna_, Dec 20 2008
%Y Cf. A152399: log(e_q(x, -x)); A227681, A306749.
%K nonn
%O 0,4
%A _Paul D. Hanna_, Dec 16 2008