The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076585 Let P(n,x) = Product_{k=1..n} polcyclo(k,x) where polcyclo(k,x) denotes the k-th cyclotomic polynomial. Sequence gives array of coefficients of P(n,x). 0
 1, -1, 1, 0, -1, 1, 1, 0, -1, -1, 1, 1, 1, 0, -1, -1, -1, 1, 2, 3, 3, 2, 0, -2, -3, -3, -2, -1, 1, 1, 2, 2, 2, 1, 0, -1, -2, -2, -2, -1, -1, 1, 2, 4, 6, 8, 9, 9, 7, 4, 0, -4, -7, -9, -9, -8, -6, -4, -2, -1, 1, 2, 4, 6, 9, 11, 13, 13, 12, 9, 5, 0, -5, -9, -12, -13, -13, -11, -9, -6, -4, -2, -1, 1, 2, 4, 7, 11, 15, 20, 24, 27, 28, 27, 23, 17, 9, 0, -9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,19 COMMENTS The degree of P(n,x) is phi(1) + phi(2) + ... + phi(n) = A002088(n) and if c(n,i) denotes the coefficient of x^i in P(n,x): c(n,i) + c(n, A002088(n) -i ) = 0. LINKS EXAMPLE P(5,x) = x^10 + 2*x^9 + 3*x^8 + 3*x^7 + 2*x^6 - 2*x^4 - 3*x^3 - 3*x^2 - 2*x - 1 hence: 1,2,3,3,2,0,-2,-3,-3,-2,-1 is a segment in the sequence. Triangle begins: [1, -1] [1, 0, -1] [1, 1, 0, -1, -1] [1, 1, 1, 0, -1, -1, -1] [1, 2, 3, 3, 2, 0, -2, -3, -3, -2, -1] [1, 1, 2, 2, 2, 1, 0, -1, -2, -2, -2, -1, -1] [1, 2, 4, 6, 8, 9, 9, 7, 4, 0, -4, -7, -9, -9, -8, -6, -4, -2, -1] ... PROG (PARI) row(n) = Vec(prod(k=1, n, polcyclo(k, x))); \\ Michel Marcus, May 24 2019 CROSSREFS Sequence in context: A198197 A203400 A077869 * A323186 A022906 A285408 Adjacent sequences:  A076582 A076583 A076584 * A076586 A076587 A076588 KEYWORD sign,tabf AUTHOR Benoit Cloitre, Oct 20 2002 EXTENSIONS Keyword tabf from Michel Marcus, May 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 10:29 EST 2021. Contains 349401 sequences. (Running on oeis4.)