Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jul 15 2022 08:28:59
%S 1,1,-1,1,0,-1,1,1,0,-1,-1,1,1,1,0,-1,-1,-1,1,2,3,3,2,0,-2,-3,-3,-2,
%T -1,1,1,2,2,2,1,0,-1,-2,-2,-2,-1,-1,1,2,4,6,8,9,9,7,4,0,-4,-7,-9,-9,
%U -8,-6,-4,-2,-1,1,2,4,6,9,11,13,13,12,9,5,0,-5,-9,-12,-13,-13,-11,-9,-6,-4,-2,-1,1,2,4,7,11,15,20,24,27,28,27,23,17,9,0,-9
%N Let P(n,x) = Product_{k=1..n} polcyclo(k,x) where polcyclo(k,x) denotes the k-th cyclotomic polynomial. Sequence gives array of coefficients of P(n,x).
%C The degree of P(n,x) is phi(1) + phi(2) + ... + phi(n) = A002088(n) and if c(n,i) denotes the coefficient of x^i in P(n,x): c(n,i) + c(n, A002088(n) -i ) = 0.
%H Alois P. Heinz, <a href="/A076585/b076585.txt">Rows n = 0..60, flattened</a>
%e P(5,x) = x^10 + 2*x^9 + 3*x^8 + 3*x^7 + 2*x^6 - 2*x^4 - 3*x^3 - 3*x^2 - 2*x - 1 hence: 1,2,3,3,2,0,-2,-3,-3,-2,-1 is a segment in the sequence.
%e Triangle begins:
%e [1]
%e [1, -1]
%e [1, 0, -1]
%e [1, 1, 0, -1, -1]
%e [1, 1, 1, 0, -1, -1, -1]
%e [1, 2, 3, 3, 2, 0, -2, -3, -3, -2, -1]
%e [1, 1, 2, 2, 2, 1, 0, -1, -2, -2, -2, -1, -1]
%e [1, 2, 4, 6, 8, 9, 9, 7, 4, 0, -4, -7, -9, -9, -8, -6, -4, -2, -1]
%e ...
%p T:= n-> (p-> seq(coeff(p, x, degree(p)-i), i=0..degree(p)))(
%p mul(numtheory[cyclotomic](i, x), i=1..n)):
%p seq(T(n), n=0..10); # _Alois P. Heinz_, Jul 15 2022
%o (PARI) row(n) = Vec(prod(k=1,n,polcyclo(k,x))); \\ _Michel Marcus_, May 24 2019
%Y Cf. A002088, A013595, A013596.
%Y Row sums give A000007.
%K sign,tabf
%O 0,20
%A _Benoit Cloitre_, Oct 20 2002
%E Keyword tabf from _Michel Marcus_, May 24 2019