This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099028 Euler-Seidel matrix T(k,n) with start sequence e.g.f. 2x/(1+e^(2x)), read by antidiagonals. 4
 0, 1, 1, 0, -1, -2, -3, -3, -2, 0, 0, 3, 6, 8, 8, 25, 25, 22, 16, 8, 0, 0, -25, -50, -72, -88, -96, -96, -427, -427, -402, -352, -280, -192, -96, 0, 0, 427, 854, 1256, 1608, 1888, 2080, 2176, 2176, 12465, 12465, 12038, 11184, 9928, 8320, 6432, 4352, 2176, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS In an Euler-Seidel matrix, the rows are consecutive pairwise sums and the columns consecutive differences. LINKS D. Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78. FORMULA Recurrence: T(k, n) = T(k-1, n) + T(k-1, n+1). EXAMPLE Seidel matrix: [    0     1    -2     0     8     0   -96     0  2176     0] [    1    -1    -2     8     8   -96   -96  2176  2176     .] [    0    -3     6    16   -88  -192  2080  4352     .     .] [   -3     3    22   -72  -280  1888  6432     .     .     .] [    0    25   -50  -352  1608  8320     .     .     .     .] [   25   -25  -402  1256  9928     .     .     .     .     .] [    0  -427   854 11184     .     .     .     .     .     .] [ -427   427 12038     .     .     .     .     .     .     .] [    0 12465     .     .     .     .     .     .     .     .] [12465     .     .     .     .     .     .     .     .     .] MATHEMATICA T[k_, n_] := T[k, n] = If[k == 0, SeriesCoefficient[2x/(1 + E^(2x)), {x, 0, n}] n!, T[k-1, n] + T[k-1, n+1]]; Table[T[k-n, n], {k, 0, 9}, {n, 0, k}] (* Jean-François Alcover, Jun 11 2019 *) PROG (Sage) def SeidelMatrixA099028(dim):     E = matrix(ZZ, dim)     t = taylor(2*x/(1+exp(2*x)), x, 0, dim + 1)     for k in (0..dim-1):         E[0, k] = factorial(k) * t.coefficient(x, k)     R = [0]     for n in (1..dim-1):         for k in (0..dim-n-1):             E[n, k] = E[n-1, k] + E[n-1, k+1]         R.extend([E[n-k, k] for k in (0..n)])     # print E     return R print SeidelMatrixA099028(10) # Peter Luschny, Jul 02 2016 CROSSREFS First column (odd part) is A009843, main diagonal is in A099029. Antidiagonal sums are in A065619. Cf. A009752. Sequence in context: A188886 A131012 A083057 * A279645 A198197 A203400 Adjacent sequences:  A099025 A099026 A099027 * A099029 A099030 A099031 KEYWORD sign,tabl AUTHOR Ralf Stephan, Sep 27 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)