The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099025 Expansion of 1 / ((1+x) * (1-5*x+x^2)). 4
 1, 4, 20, 95, 456, 2184, 10465, 50140, 240236, 1151039, 5514960, 26423760, 126603841, 606595444, 2906373380, 13925271455, 66719983896, 319674648024, 1531653256225, 7338591633100, 35161304909276, 168467932913279, 807178359657120, 3867423865372320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., 58:2 (2020), 140-142. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 P. Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6 Index entries for linear recurrences with constant coefficients, signature (4,4,-1). FORMULA a(n) = (1/7)*[A030221(n+2) - A003501(n+2) + (-1)^n]. a(n) = 5*a(n-1) -a(n-2) +(-1)^n, a(0)=1, a(1)=4. - Vincenzo Librandi, Mar 22 2011 G.f.: 1 / ((1 + x) * (1 - 5*x + x^2)). a(-3-n) = -a(n). - Michael Somos, Jan 25 2013 a(n) = (2^(-n)*(3*(-2)^n+(9-2*sqrt(21))*(5-sqrt(21))^n+(5+sqrt(21))^n*(9+2*sqrt(21))))/21. - Colin Barker, Nov 02 2016 EXAMPLE 1 + 4*x + 20*x^2 + 95*x^3 + 456*x^4 + 2184*x^5 + 10465*x^6 + ... MATHEMATICA CoefficientList[Series[1/((1+x)*(1-5*x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{4, 4, -1}, {1, 4, 20}, 30] (* G. C. Greubel, Dec 31 2017 *) PROG (PARI) Vec(1/(1+x)/(1-5*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012 (PARI)  {a(n) = (3 * (-1)^n + 38 * subst( poltchebi(n), x, 5/2) - 8 * subst( poltchebi(n-1), x, 5/2)) / 21} /* Michael Somos, Jan 25 2013 */ (MAGMA) I:=[1, 4, 20]; [n le 3 select I[n] else 4*Self(n-1) + 4*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 31 2017 CROSSREFS First differences of A089927. First differences are in A003769 and A005386. Pairwise sums are in A004254. Sequence in context: A239650 A218837 A254943 * A008353 A250162 A296665 Adjacent sequences:  A099022 A099023 A099024 * A099026 A099027 A099028 KEYWORD nonn,easy AUTHOR Ralf Stephan, Sep 26 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 07:26 EDT 2021. Contains 343995 sequences. (Running on oeis4.)