|
|
A003501
|
|
a(n) = 5*a(n-1) - a(n-2), with a(0) = 2, a(1) = 5.
(Formerly M1540)
|
|
20
|
|
|
2, 5, 23, 110, 527, 2525, 12098, 57965, 277727, 1330670, 6375623, 30547445, 146361602, 701260565, 3359941223, 16098445550, 77132286527, 369562987085, 1770682648898, 8483850257405, 40648568638127, 194758992933230
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Positive values of x satisfying x^2 - 21*y^2 = 4; values of y are in A004254. - Wolfdieter Lang, Nov 29 2002
Except for the first term, positive values of x (or y) satisfying x^2 - 5xy + y^2 + 21 = 0. - Colin Barker, Feb 08 2014
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..200
Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
Noureddine Chair, Exact two-point resistance, and the simple random walk on the complete graph minus N edges, Ann. Phys. 327, No. 12, 3116-3129 (2012), P(7).
Tanya Khovanova, Recursive Sequences
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211.
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
Index entries for sequences related to Chebyshev polynomials.
Index entries for linear recurrences with constant coefficients, signature (5,-1).
|
|
FORMULA
|
a(n) = 5*S(n-1, 5) - 2*S(n-2, 5) = S(n, 5) - S(n-2, 5) = 2*T(n, 5/2), with S(n, x)=U(n, x/2), S(-1, x)=0, S(-2, x)=-1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 5) = A004254(n), n>=0.
G.f.: (2-5*x)/(1-5*x+x^2). - Simon Plouffe in his 1992 dissertation.
a(n) ~ (1/2*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002
a(n) = ap^n + am^n, with ap=(5+sqrt(21))/2 and am=(5-sqrt(21))/2.
a(n) = sqrt(4 + 21*A004254(n)^2).
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(5 - sqrt(21)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.19827 65373 95327 17782 ... = 2 + 1/(5 + 1/(23 + 1/(110 + ...))).
Also F(-alpha) = 0.79824 49142 28050 93561 ... has the continued fraction representation 1 - 1/(5 - 1/(23 - 1/(110 - ...))) and the simple continued fraction expansion 1/(1 + 1/((5-2) + 1/(1 + 1/((23-2) + 1/(1 + 1/((110-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((5^2-4) + 1/(1 + 1/((23^2-4) + 1/(1 + 1/((110^2-4) + 1/(1 + ...))))))).
(End)
a(n) = (A217787(k+3n) + A217787(k-3n))/A217787(k) for k>=3n. - Bruno Berselli, Mar 25 2013
|
|
MAPLE
|
seq( simplify(2*ChebyshevT(n, 5/2)), n=0..30); # G. C. Greubel, Jan 16 2020
|
|
MATHEMATICA
|
a[0]=2; a[1]=5; a[n_]:= 5a[n-1] -a[n-2]; Table[a[n], {n, 0, 30}] (* Robert G. Wilson v, Jan 30 2004 *)
LinearRecurrence[{5, -1}, {2, 5}, 30] (* Harvey P. Dale, May 12 2019 *)
2*ChebyshevT[Range[0, 30], 5/2] (* G. C. Greubel, Jan 16 2020 *)
|
|
PROG
|
(PARI) a(n)=if(n<0, 0, subst(poltchebi(n), x, 5/2)*2)
(Sage) [lucas_number2(n, 5, 1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
(MAGMA) I:=[2, 5]; [n le 2 select I[n] else 5*Self(n-1) -Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2020
(MAGMA) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!((2-5*x)/(1-5*x+x^2))); // Marius A. Burtea, Jan 16 2020
(GAP) a:=[2, 5];; for n in [4..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 16 2020
|
|
CROSSREFS
|
Cf. A004252, A004253, A217787.
Sequence in context: A038833 A279819 A249606 * A006990 A242227 A032182
Adjacent sequences: A003498 A003499 A003500 * A003502 A003503 A003504
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Chebyshev comments from Wolfdieter Lang, Oct 31 2002
|
|
STATUS
|
approved
|
|
|
|