login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003500 a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4.
(Formerly M1278)
44
2, 4, 14, 52, 194, 724, 2702, 10084, 37634, 140452, 524174, 1956244, 7300802, 27246964, 101687054, 379501252, 1416317954, 5285770564, 19726764302, 73621286644, 274758382274, 1025412242452, 3826890587534, 14282150107684, 53301709843202, 198924689265124 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) gives values of x satisfying x^2 - 3*y^2 = 4; corresponding y values are given by 2*A001353(n).

If M is any given term of the sequence, then the next one is 2*M + sqrt(3*M^2 - 12). - Lekraj Beedassy, Feb 18 2002

For n > 0, the three numbers a(n) - 1, a(n), and a(n) + 1 form a Fleenor-Heronian triangle, i.e., a Heronian triangle with consecutive sides, whose area A(n) may be obtained from the relation [4*A(n)]^2 = 3([a(2n)]^2 - 4); or A(n) = 3*A001353(2*n)/2 and whose semiperimeter is 3*a[n]/2. The sequence is symmetrical about a[0], i.e., a[-n] = a[n].

For n > 0, a(n) + 2 is the number of dimer tilings of a 2*n X 2 Klein bottle (cf. A103999).

Tsumura shows that, for prime p, a(p) is composite (contrary to a conjecture of Juricevic). - Charles R Greathouse IV, Apr 13 2010

Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 12 = 0. - Colin Barker, Feb 04 2014

Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 192 = 0. - Colin Barker, Feb 16 2014

A268281(n) - 1 is a member of this sequence iff A268281(n) is prime. - Frank M Jackson, Feb 27 2016

a(n) gives values of x satisfying 3*x^2 - 4*y^2 = 12; corresponding y values are given by A005320. - Sture Sjöstedt, Dec 19 2017

Middle side lengths of almost-equilateral Heronian triangles. - Wesley Ivan Hurt, May 20 2020

REFERENCES

B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 82.

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p.91.

Michael P. Cohen, Generating Heronian Triangles With Consecutive Integer Sides. Journal of Recreational Mathematics, vol. 30 no. 2 1999-2000 p. 123.

L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 197;198;200;201. Chelsea NY.

Charles R. Fleenor, Heronian Triangles with Consecutive Integer Sides, Journal of Recreational Mathematics, Volume 28, no. 2 (1996-7) 113-115.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

V. D. To, "Finding All Fleenor-Heronian Triangles", Journal of Recreational Mathematics vol. 32 no.4 2003-4 pp. 298-301 Baywood NY.

LINKS

T. D. Noe, Table of n, a(n) for n=0..200

P. Bala, Some simple continued fraction expansions for an infinite product, Part 1

R. A. Beauregard and E. R. Suryanarayan, The Brahmagupta Triangles, The College Mathematics Journal 29(1) 13-7 1998 MAA.

Daniel Birmajer, Juan B. Gil, Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv preprint arXiv:1505.06339 [math.NT], 2015.

K. S. Brown's Mathpages, Some Properties of the Lucas Sequence(2, 4, 14, 52, 194, ...)

H. W. Gould, A triangle with integral sides and area, Fib. Quart., 11 (1973), 27-39.

Tanya Khovanova, Recursive Sequences

E. Keith Lloyd, The Standard Deviation of 1, 2,..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243.

S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211.

J. Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]

Yu Tsumura, On compositeness of special types of integers, arXiv:1004.1244 [math.NT], 2010.

Eric Weisstein's World of Mathematics, Heronian Triangle

Wikipedia, Heronian triangle

A. V. Zarelua, On Matrix Analogs of Fermat’s Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for linear recurrences with constant coefficients, signature (4,-1).

FORMULA

a(n) = ( 2 + sqrt(3) )^n + ( 2 - sqrt(3) )^n.

a(n) = 2*A001075(n).

G.f.: 2*(1 - 2*x)/(1 - 4*x + x^2). Simon Plouffe in his 1992 dissertation.

a(n) = A001835(n)+A001835(n+1).

a(n) = trace of n-th power of the 2 X 2 matrix [1 2 / 1 3]. - Gary W. Adamson, Jun 30 2003 [corrected by Joerg Arndt, Jun 18 2020]

From the addition formula, a(n+m) = a(n)*a(m) - a(m-n), it is easy to derive multiplication formulas, such as: a(2n) = (a(n))^2 - 2, a(3*n) = (a(n))^3 - 3*(a(n)), a(4*n) = (a(n))^4 - 4*(a(n))^2 + 2, a(5n) = (a(n))^5 - 5*(a(n))^3 + 5*(a(n)), a(6*n) = (a(n))^6 - 6*(a(n))^4 + 9*(a(n))^2 - 2, etc. The absolute values of the coefficients in the expansions are given by the triangle A034807. - John Blythe Dobson, Nov 04 2007

a(n) = 2*A001353(n+1) - 4*A001353(n).  R. J. Mathar, Nov 16 2007

From Peter Bala, Jan 06 2013: (Start)

Let F(x) = Product_{n=0..infinity} (1 + x^(4*n + 1))/(1 + x^(4*n + 3)). Let alpha = 2 - sqrt(3). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.24561 99455 06551 88869 ... = 2 + 1/(4 + 1/(14 + 1/(52 + ...))). Cf. A174500.

Also F(-alpha) = 0.74544 81786 39692 68884 ... has the continued fraction representation 1 - 1/(4 - 1/(14 - 1/(52 - ...))) and the simple continued fraction expansion 1/(1 + 1/((4 - 2) + 1/(1 + 1/((14 - 2) + 1/(1 + 1/((52 - 2) + 1/(1 + ...))))))).

F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((4^2 - 4) + 1/(1 + 1/((14^2 - 4) + 1/(1 + 1/((52^2 - 4) + 1/(1 + ...))))))).

(End)

a(2^n) = A003010(n). - John Blythe Dobson, Mar 10 2014

a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 12*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015

E.g.f.: 2*exp(2*x)*cosh(sqrt(3)*x). - Ilya Gutkovskiy, Apr 27 2016

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n*(n - k - 1)!/(k!*(n - 2*k)!)*4^(n - 2*k) for n >= 1. - Peter Luschny, May 10 2016

From Peter Bala, Oct 15 2019: (Start)

a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; -1, 4].

Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).

2*Sum_{n >= 1 } 1/( a(n) - 6/a(n) ) = 1.

6*Sum_{n >= 1 } (-1)^(n+1)/( a(n) + 2/a(n) ) = 1.

8*Sum_{n >= 1 } 1/( a(n) + 24/(a(n) - 12/(a(n))) ) = 1.

8*Sum_{n >= 1 } (-1)^(n+1)/( a(n) + 8/(a(n) + 4/(a(n))) ) = 1.

Series acceleration formulas for sums of reciprocals:

Sum_{n >= 1} 1/a(n) = 1/2 - 6*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 6)),

Sum_{n >= 1} 1/a(n) = 1/8 + 24*Sum_{n >= 1} 1/(a(n)*(a(n)^2 + 12)),

Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/6 + 2*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 2)) and

Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 12)).

Sum_{n >= 1} 1/a(n) = ( theta_3(2-sqrt(3))^2 - 1 )/4 = 0.34770 07561 66992 06261 .... See Borwein and Borwein, Proposition 3.5 (i), p.91.

Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - theta_3(sqrt(3)-2)^2 )/4. Cf. A003499 and A153415. (End)

MAPLE

A003500 := proc(n) option remember; if n <= 1 then 2*n+2 else 4*procname(n-1)-procname(n-2); fi;

end proc;

MATHEMATICA

a[0]=2; a[1]=4; a[n_]:= a[n]= 4a[n-1] -a[n-2]; Table[a[n], {n, 0, 23}]

LinearRecurrence[{4, -1}, {2, 4}, 30] (* Harvey P. Dale, Aug 20 2011 *)

Table[Round@LucasL[2n, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)

PROG

(Sage) [lucas_number2(n, 4, 1) for n in range(0, 24)] # Zerinvary Lajos, May 14 2009

(Haskell)

a003500 n = a003500_list !! n

a003500_list = 2 : 4 : zipWith (-)

   (map (* 4) $ tail a003500_list) a003500_list

-- Reinhard Zumkeller, Dec 17 2011

(PARI) x='x+O('x^99); Vec(-2*(-1+2*x)/(1-4*x+x^2)) \\ Altug Alkan, Apr 04 2016

(MAGMA) I:=[2, 4]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018

CROSSREFS

Cf. A001075, A001353, A001835.

Cf. A011945 (areas), A334277 (perimeters).

Cf. this sequence (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).

Cf. A001570, A002530, A005320, A006051, A048788, A174500, A268281.

Sequence in context: A046650 A327235 A055727 * A316363 A295760 A129876

Adjacent sequences:  A003497 A003498 A003499 * A003501 A003502 A003503

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, May 03 2000

Additional comments from Lekraj Beedassy, Feb 14 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 21:49 EDT 2020. Contains 335537 sequences. (Running on oeis4.)