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] AN INTERESTING CONTINUED FRACTION

, in a forthcoming paper we plin to discuss the pa

m/j 1 2\ 3 4 5 /’) 7 8 9\
T
1 5 14 204 285
2 13 29 284 384
3 25 50 380 501
4 41 77 192 636
5 61 110 620 689
6 85 149 664 860
7 113 194 824 1049
8 145 245 1100 1356
9 181 302 811 1292 1581
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AN INTERESTING CONTINUED FRACTION
JEFFREY SHALLIT, Student, Lower Merion High School

L. Introduction. Consider the following continued fraction

b-2 b+2 1 1 1
LA A =2
(1 @ T b +l-b-b—b - (bz2)

This continued fraction and its convergents have many unusual properties. In
fact, the numerators and denominators of the convergents to (1) form many

sequences that occur in number-theoretic problems.

Ii. Value of «. Since the related continued fraction

1

i1
b—b-

is easily shown to be equal to b = Vb —4), it readily follows that a =
Y(b + Vb’ —4). It is also obvious that a is the conjugate of B8 and that a = 1/8.

« and B are the roots of the quadratic x'—bx+1=0.

T e T TR

= A




. L i e e e e g e S S e S, T M S RN B A T A LRt D A e R ae

208 MATHEMATICS MAGAZINE [Sept.-Oct.

The numbers a and 8 have the property that each number plus its reciprocal
equals b:

a+lja=8+1/3=>b.

The simple continued fraction expansions (as contrasted with (1) and (2),
which are irregular) of both « and B8 are interesting:

1 1 1 1

a=b ol s 4142

g=—_ 1 1 1 1
b—1+1+b—2+1+b-2+

In certain cases, Vo and \/E are also quadratic irrationals and not quartic
(biquadratic) irrationals. For we have

Va=(Vb+Vb =4)IV2=5(Vb +2+Vb -2).

Now if b = x*+2, then

If b =x*—2, then

1
\/c_r=%(x+m)=x—l+

T+x —2+1+x -2+

There are similar expansions for V8. We have

VB=(Vb-Vb -4)V2=4Vb+2-Vb-2).
If b =x*+2, then

1 1 1 1
VB=iVxi+d-x)=— — — — -
X +X+X +x+
If b =x*-2, then

1 1 1 1 1
x—l+1+x—2+l+x—2+.”

VB=i(x - Vxi-4=

III. Convergents to (1). The first few convergents, pPalgn. to (1) for b =
2,3.4,56and n=1,2,3,4,5,6,7,8,9 are given in Table [.
By the rule for determining the convergents to a continued fraction, we have

o pq =11, pilg:=bl2, pilg.=(b>=2)b.

Also, for n > 1, we have p, = quri.
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TaBLE |

Convergents to (1)
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b\n 1 2 3 4 5 6 7 8 9
P2 2 2 2 2 2 2 2
o2 2 2 2 2 2 2 2
1
;o1 s @ o w s o <- S
12 7 13 47 2 322 843
2 2 2702 7634 =
s L4 52 194 724 0 10084 37634 %g’ 2l
P2 4 14 52 194 724 2702 10084
s 1 s moowo 527 2525 12098 57965 77120 — >
T2 23 0 527 2525 12098 57965
e L 6 u 198 1154 6726 39202 228486 1331714 %7?
P2 6 34 198 154 6726 39202 228486

Now consider the Fibonacci-like sequence defined by the second order

recurrence

a, = ba,_,— an-1, ap=72,

a|:b.

By the theory of difference equations, it can be shown that

(3) a, =[3(b + Vb =" —[:(b - V' = N]".

Buta =i(b +Vb’—-4), 8 =3(b - Vb*—4). Therefore, a, = «" + 8". By induc-
tion, it is easily demonstrated that a, = p.., = g.... From equation (3) it also

easily follows that a,, =a’—2.

IV. Thecase b =3, If b =3, thena = %(3+\/§) = ¢ + 1, where ¢ is phi, the

golden ratio (1], and B =i(3-V5) =2~ ¢.

The sequence of numerators, p., to the continued fraction in equation (1) is

3,7, 18, 47,123, 322, 843, 2207, - - -

In fact, for n > 1, p, = L;.-,, where L, is the Lucas sequence defined by

Lo=2, L| = 1, Ln = L,‘_|+ L,,_z [2]

Also, pa., = r. i5 another one of the sequences studied by Lucas [3], defined

by ro=3, r.., =ri—2. This sequence

3,7, 47, 2207, 4870847, - - -

was employed by Lucas to test the primality of Mersenne numbers of the form

27— 1, where 4m + 3 is prime.

K
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Sierpinski [4] noted that

I 1 1
B=13-V5=2-¢=—+

+
r's ol ol 72 rol'yIar

V. The case b =4, If b =4, then a=2+V3, B =2-V3, and P- 1S the
sequence

_ v
4. 14,52, 194, 724, 2702, 10084, 37634, --.
Az500
P = s, 1s another sequence discussed by Lucas, defined by s, =4, s.., =
s:—2. Lucas employed this sequence to test the primality of Mersenne numbers
[5]. Lehmer [6] improved the test to the following form:
If n is an odd prime, then 2" - 1 is prime if and only if it evenly divides So_t.

The sequence s, is
4, 14, 194, 37634, 1416317954, - - - ? 0/ ﬁ

VL. The case b = 6. If b =6, then a =3+2V2, B =3-2V2, and p, is the

sequence C
\/6,34, 198, 1154, 6726, 39202, - - - Pf %"f 7? V]

This sequence is involved in the determination of whether or not the product
of three consecutive triangular numbers, T, ,T.T,.,, is a square. In fact,
T, T,T,., is a square if n = (3p« — 2)/4. See Beiler [7].

P _y = v, is still another sequence discussed by Lucas [8]. The sequence v,
is as follows:

‘"f(:‘( ;(} i

-’

6, 34. 1154, 1331714, - --

where v4=6. v,,, = v2—2. This sequence was employed by Lucas to test the
primality of Fermat numbers 2% + 1.

VIL. The case b =\/5. This case is rather unusual because b is not an
integer. so none of the convergents except p,/q, represent rational numbers. We
have & = i(1+V5) = ¢ and B=4V5-1)= ¢ — 1. The first 9 convergents to (1)
with b = V'S are given in Table II.

TaBLE 1]

p.lq. forb =\/5

n 12 3 4 5 6 7 8 9
pela. L OMS 3 25 7 5 g 13\V3 47
e 2 V5 o3 V5 7 5V's 18 13V5 J
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From equation (3) it is easy to show that p;,./\/g = F...., where F. is the i
famous Fibonacci sequence defined by F, =0, Fi = 1, F,=F.,+F....The first '
few terms of the Fibonacci sequence are

0.1.1,2,3,5,8, 13,21, 34, 55, 89, 144,233,377, - -~ V/

From equation (3) it also can be shown that pan. = I.... where L. is the
Lucas sequence discussed in part 1V.
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QUARTIC EQUATIONS AND TETRAHEDRAL SYMMETRIES

ROGER CHALKLEY. University of Cincinnati

1. Introduction. In Section 2, we give a short derivation of formulas for the
roots of a quartic equation. A closely related representation of the symmetric
group Sa by matrices of size 3%3 is presented in Section 3. Geometric

interpretations follow in Section 6.
Throughout, let F be a field in which 1+ 1 #0. For us, the matrix

T
I

is basic. It has H* =1 and H'= H.




