|
|
A011943
|
|
Numbers k such that any group of k consecutive integers has integral standard deviation (viz. A011944(k)).
|
|
26
|
|
|
1, 7, 97, 1351, 18817, 262087, 3650401, 50843527, 708158977, 9863382151, 137379191137, 1913445293767, 26650854921601, 371198523608647, 5170128475599457, 72010600134783751, 1002978273411373057, 13969685227624439047, 194572614913330773601, 2710046923559006391367
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If k is in the sequence, then it has successor 7*k + 4*sqrt(3*(k^2 - 1)). - Lekraj Beedassy, Jun 28 2002
Chebyshev's polynomials T(n,x) evaluated at x=7.
a(n+1) give all (nontrivial) solutions of Pell equation a(n+1)^2 - 48*b(n+1)^2 = +1 with b(n+1)=A007655(n+2), n >= 0.
Also all solutions for x in Pell equation x^2 - 12*y^2 = 1. A011944 gives corresponding values for y. - Herbert Kociemba, Jun 05 2022
Also numbers x of the form 3j+1 such that x^2 = 3m^2+1. Also solutions of x in x^2 - 3*y^2 = 1 in A001075 if x = 3j+1, j=1,2,... - Cino Hilliard, Mar 05 2005
In addition to having integral standard deviation, these k consecutive integers also have integral mean. This question was posed by Jim Delany of Cal Poly in 1989. The solution appeared in the American Mathematical Monthly Vol. 97, No. 5, (May, 1990), pp. 432 as problem E3302. - Ronald S. Tiberio, Jun 23 2008
Lebl and Lichtblau give the formula a(d) = ((7+4*sqrt(3))^d + (7-4*sqrt(3))^d)/2 in Theorem 1.2(iii), p. 4. - Jonathan Vos Post, Aug 05 2008
|
|
REFERENCES
|
P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238. - N. J. A. Sloane, Mar 03 2022
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 14*a(n-1) - a(n-2).
a(n) ~ (1/2)*(2 + sqrt(3))^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n) = T(n, 7) = (S(n, 14)-S(n-2, 14))/2 = T(2*n, 2) with S(n, x) := U(n, x/2) and T(n, x), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(-2, x) := -1, S(-1, x) := 0, S(n, 14)=A007655(n+2).
a(n) = ((7+4*sqrt(3))^n + (7-4*sqrt(3))^n)/2.
a(n) = sqrt(48*A007655(n+1)^2 + 1).
G.f.: (1-7*x)/(1-14*x+x^2).
a(n) = (-1)^(n+1)*hypergeom([n-1, -n+1], [1/2], 4). - Peter Luschny, Jul 26 2020
|
|
MAPLE
|
a := n -> (-1)^(n+1)*hypergeom([n-1, -n+1], [1/2], 4):
|
|
MATHEMATICA
|
LinearRecurrence[{14, -1}, {1, 7}, 30] (* Harvey P. Dale, Dec 16 2013 *)
a[n_]:=1/2((7-4 Sqrt[3])^n+(7+4 Sqrt[3])^n); Table[a[n] // Simplify, {n, 0, 20}] (* Gerry Martens, May 30 2015 *)
|
|
PROG
|
(PARI) a(n)=if(n<0, 0, subst(poltchebi(n), x, 7))
(PARI) g(n) = forstep(x=1, n, 3, y=(x^2-1)/3; if(issquare(y), print1(x", "))) \\ Cino Hilliard, Mar 05 2005
(Magma) I:=[1, 7]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
E. K. Lloyd
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|