login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053120 Triangle of coefficients of Chebyshev's T(n,x) polynomials (powers of x in increasing order). 210
1, 0, 1, -1, 0, 2, 0, -3, 0, 4, 1, 0, -8, 0, 8, 0, 5, 0, -20, 0, 16, -1, 0, 18, 0, -48, 0, 32, 0, -7, 0, 56, 0, -112, 0, 64, 1, 0, -32, 0, 160, 0, -256, 0, 128, 0, 9, 0, -120, 0, 432, 0, -576, 0, 256, -1, 0, 50, 0, -400, 0, 1120, 0, -1280, 0, 512, 0, -11, 0, 220, 0, -1232, 0, 2816, 0, -2816, 0, 1024 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
Row sums (signed triangle): A000012 (powers of 1). Row sums (unsigned triangle): A001333(n).
From Wolfdieter Lang, Oct 21 2013: (Start)
The row polynomials T(n,x) equal (S(n,2*x) - S(n-2,2*x))/2, n >= 0, with the row polynomials S from A049310, with S(-1,x) = 0, and S(-2,x) = -1.
The zeros of T(n,x) are x(n,k) = cos((2*k+1)*Pi/(2*n)), k = 0, 1, ..., n-1, n >= 1. (End)
From Wolfdieter Lang, Jan 03 2020 and Paul Weisenhorn: (Start)
The (sub)diagonal sequences {D_{2*k}(m)}_{m >= 0}, for k >= 0, have o.g.f. GD_{2*k}(x) = (-1)^k*(1-x)/(1-2*x)^(k+1), for k >= 0, and GD_{2*k+1}(x) = 0, for k >= 0. This follows from their o.g.f. GGD(z, x) := Sum_{k>=0} GD_k(x)*z^n which is obtained from the o.g.f of the T-triangle GT(z, x) = (1-x*z)/(1 - 2*x + z^2) (see the formula section) by GGD(z, x) = GT(z, x/z).
The explicit form is then D_{2*k}(m) = (-1)^k, for m = 0, and
(-1)^k*(2*k+m)*2^(m-1)*risefac(k+1, m-1)/m!, for m >= 1, with the rising factorial risefac(x, n). (End)
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available), p. 795.
F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 pp. 77, 105.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
TableCurve 2D, Automated curve fitting and equation discovery, Version 5.01 for Windows, User's Manual, Chebyshev Series Polynomials and Rationals, pages 12-21 - 12-24, SYSTAT Software, Inc., Richmond, WA, 2002.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [scanned copy], p.795.
Paul Barry and A. Hennessy, Meixner-Type Results for Riordan Arrays and Associated Integer Sequences, J. Int. Seq. 13 (2010) # 10.9.4, section 5.
P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.- From Tom Copeland, Oct 11 2014
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
Wolfdieter Lang, Rows n = 0..20.
FORMULA
T(n, m) = A039991(n, n-m).
G.f. for row polynomials T(n,x) (signed triangle): (1-x*z)/(1-2*x*z+z^2). If unsigned: (1-x*z)/(1-2*x*z-z^2).
T(n, m) := 0 if n < m or n+m odd; T(n, m) = (-1)^(n/2) if m=0 (n even); otherwise T(n, m) = ((-1)^((n+m)/2 + m))*(2^(m-1))*n*binomial((n+m)/2-1, m-1)/m.
Recursion for n >= 2: T(n, m) = T*a(n-1, m-1) - T(n-2, m), T(n, m)=0 if n < m, T(n, -1) := 0, T(0, 0) = T(1, 1) = 1.
G.f. for m-th column (signed triangle): 1/(1+x^2) if m=0, otherwise (2^(m-1))*(x^m)*(1-x^2)/(1+x^2)^(m+1).
From G. C. Greubel, Aug 10 2022: (Start)
Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n).
T(2*n, n) = i^n * A036909(n/2) * (1+(-1)^n)/2 + [n=0]/3. (End)
T(n, k) = [x^k] T(n, x) for n >= 1, where T(n, x) = Sum_{k=1..n}(-1)^(n - k)*(n/ (2*k))*binomial(k, n - k)*(2*x)^(2*k - n). - Peter Luschny, Sep 20 2022
EXAMPLE
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10...
0: 1
1: 0 1
2: -1 0 2
3: 0 -3 0 4
4: 1 0 -8 0 8
5: 0 5 0 -20 0 16
6: -1 0 18 0 -48 0 32
7: 0 -7 0 56 0 -112 0 64
8: 1 0 -32 0 160 0 -256 0 128
9: 0 9 0 -120 0 432 0 -576 0 256
10: -1 0 50 0 -400 0 1120 0 -1280 0 512
... Reformatted and extended - Wolfdieter Lang, Oct 21 2013
E.g., the fourth row (n=3) corresponds to the polynomial T(3,x) = -3*x + 4*x^3.
MAPLE
with(orthopoly) ;
A053120 := proc(n, k)
T(n, x) ;
coeftayl(%, x=0, k) ;
end proc: # R. J. Mathar, Jun 30 2013
T := (n, x) -> `if`(n = 0, 1, add((-1)^(n - k) * (n/(2*k))*binomial(k, n - k) *(2*x)^(2*k - n), k = 1 ..n)):
seq(seq(coeff(T(n, x), x, k), k = 0..n), n = 0..11); # Peter Luschny, Sep 20 2022
MATHEMATICA
t[n_, k_] := Coefficient[ ChebyshevT[n, x], x, k]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Jan 16 2012 *)
PROG
(Magma) &cat[ Coefficients(ChebyshevT(n)): n in [0..11] ]; // Klaus Brockhaus, Mar 08 2008
(PARI) for(n=0, 5, P=polchebyshev(n); for(k=0, n, print1(polcoeff(P, k)", "))) \\ Charles R Greathouse IV, Jan 16 2012
(Julia)
using Nemo
function A053120Row(n)
R, x = PolynomialRing(ZZ, "x")
p = chebyshev_t(n, x)
[coeff(p, j) for j in 0:n] end
for n in 0:6 A053120Row(n) |> println end # Peter Luschny, Mar 13 2018
(SageMath)
def f(n, k): # f = A039991
if (n<2 and k==0): return 1
elif (k<0 or k>n): return 0
else: return 2*f(n-1, k) - f(n-2, k-2)
def A053120(n, k): return f(n, n-k)
flatten([[A053120(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 10 2022
CROSSREFS
The first nonzero (sub)diagonal sequences are A011782, -A001792, A001793(n+1), -A001794, A006974, -A006975, A006976, -A209404.
Sequence in context: A223707 A046767 A115720 * A366601 A336836 A284976
KEYWORD
sign,tabl,nice,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:56 EDT 2024. Contains 370952 sequences. (Running on oeis4.)