login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188644 Array of (k^n + k^(-n))/2 where k = (sqrt(x^2-1) + x)^2 for integers x >= 1. 10
1, 1, 1, 1, 7, 1, 1, 97, 17, 1, 1, 1351, 577, 31, 1, 1, 18817, 19601, 1921, 49, 1, 1, 262087, 665857, 119071, 4801, 71, 1, 1, 3650401, 22619537, 7380481, 470449, 10081, 97, 1, 1, 50843527, 768398401, 457470751, 46099201, 1431431, 18817, 127, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Conjecture: Given the function f(x,y) = (sqrt(x^2+y) + x)^2 and constant k=f(x,y), then for all integers x >= 1 and y=[+-]1, k may be irrational, but (k^n + k^(-n))/2 always produces integer sequences; y=-1 results shown here; y=1 results are A188645.

Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{2*k}(x), evaluated at x=n. - Seiichi Manyama, Dec 30 2018

LINKS

Table of n, a(n) for n=0..44.

Wikipedia, Chebyshev polynomials.

Index entries for sequences related to Chebyshev polynomials.

FORMULA

A(n,k) = (A188646(n,k-1) + A188646(n,k))/2.

A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019

EXAMPLE

Row 2 gives {( (2+sqrt(3))^(2*n) + (2-sqrt(3))^(2*n) )/2}.

Square array begins:

     | 0    1       2          3             4

-----+---------------------------------------------

   1 | 1,   1,      1,         1,            1, ...

   2 | 1,   7,     97,      1351,        18817, ...

   3 | 1,  17,    577,     19601,       665857, ...

   4 | 1,  31,   1921,    119071,      7380481, ...

   5 | 1,  49,   4801,    470449,     46099201, ...

   6 | 1,  71,  10081,   1431431,    203253121, ...

   7 | 1,  97,  18817,   3650401,    708158977, ...

   8 | 1, 127,  32257,   8193151,   2081028097, ...

   9 | 1, 161,  51841,  16692641,   5374978561, ...

  10 | 1, 199,  79201,  31521799,  12545596801, ...

  11 | 1, 241, 116161,  55989361,  26986755841, ...

  12 | 1, 287, 164737,  94558751,  54276558337, ...

  13 | 1, 337, 227137, 153090001, 103182433537, ...

  14 | 1, 391, 305761, 239104711, 186979578241, ...

  15 | 1, 449, 403201, 362074049, 325142092801, ...

  ...

MATHEMATICA

max = 9; y = -1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jul 17 2013 *)

CROSSREFS

Row 2 is A011943, row 3 is A056771, row 8 is A175633, (row 2)*2 is A067902, (row 9)*2 is A089775.

Column 0-5 give A000012, A056220, A144130, A243132, A243134, A243136.

(column 1)*2 is A060626.

Cf. A188645 (f(x, y) as above with y=1).

Diagonals give A173129, A322899.

Cf. A188646, A322836.

Sequence in context: A015118 A174691 A156692 * A111830 A212943 A174588

Adjacent sequences:  A188641 A188642 A188643 * A188645 A188646 A188647

KEYWORD

nonn,tabl

AUTHOR

Charles L. Hohn, Apr 06 2011

EXTENSIONS

Edited by Seiichi Manyama, Dec 30 2018

More terms from Seiichi Manyama, Jan 01 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 02:05 EST 2019. Contains 319320 sequences. (Running on oeis4.)