login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188645 Array of ((k^n)+(k^(-n)))/2 where k=(sqrt(x^2+1)+x)^2 for integers x>=1. 13
1, 3, 1, 17, 9, 1, 99, 161, 19, 1, 577, 2889, 721, 33, 1, 3363, 51841, 27379, 2177, 51, 1, 19601, 930249, 1039681, 143649, 5201, 73, 1, 114243, 16692641, 39480499, 9478657, 530451, 10657, 99, 1, 665857, 299537289, 1499219281, 625447713, 54100801, 1555849, 19601, 129, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; and constant k=f(x, y); then for all integers x>=1 and y=[+-]1, k may be irrational, but ((k^n)+(k^(-n)))/2 always produces integer sequences; y=1 results shown here; y=-1 results are A188644.

Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{k}(x), evaluated at x=2*n^2+1. - Seiichi Manyama, Jan 01 2019

LINKS

Table of n, a(n) for n=0..44.

Wikipedia, Chebyshev polynomials.

Index entries for sequences related to Chebyshev polynomials.

FORMULA

A(n,k) = (A188647(n,k-1) + A188647(n,k))/2.

A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2+1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019

EXAMPLE

Square array begins:

     | 0    1       2          3             4

-----+---------------------------------------------

   1 | 1,   3,     17,        99,          577, ...

   2 | 1,   9,    161,      2889,        51841, ...

   3 | 1,  19,    721,     27379,      1039681, ...

   4 | 1,  33,   2177,    143649,      9478657, ...

   5 | 1,  51,   5201,    530451,     54100801, ...

   6 | 1,  73,  10657,   1555849,    227143297, ...

   7 | 1,  99,  19601,   3880899,    768398401, ...

   8 | 1, 129,  33281,   8586369,   2215249921, ...

   9 | 1, 163,  53137,  17322499,   5647081537, ...

  10 | 1, 201,  80801,  32481801,  13057603201, ...

  11 | 1, 243, 118097,  57394899,  27893802817, ...

  12 | 1, 289, 167041,  96549409,  55805391361, ...

  13 | 1, 339, 229841, 155831859, 105653770561, ...

  14 | 1, 393, 308897, 242792649, 190834713217, ...

  15 | 1, 451, 406801, 366934051, 330974107201, ...

  ...

MATHEMATICA

max = 9; y = 1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jul 17 2013 *)

CROSSREFS

Row 1 is A001541, row 2 is A023039, row 3 is A078986, row 4 is A099370, row 5 is A099397, row 6 is A174747, row 8 is A176368, (row 1)*2 is A003499, (row 2)*2 is A087215.

Column 1 is A058331, (column 1)*2 is A005899.

A188644 (f(x, y) as above with y=-1).

Diagonal gives A173128.

Cf. A188647.

Sequence in context: A259031 A259686 A162313 * A060281 A151918 A089974

Adjacent sequences:  A188642 A188643 A188644 * A188646 A188647 A188648

KEYWORD

nonn,tabl

AUTHOR

Charles L. Hohn, Apr 06 2011

EXTENSIONS

Edited and extended by Seiichi Manyama, Jan 01 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 06:03 EST 2019. Contains 329310 sequences. (Running on oeis4.)