login
A099370
Chebyshev polynomial of the first kind, T(n,x), evaluated at x=33.
5
1, 33, 2177, 143649, 9478657, 625447713, 41270070401, 2723199198753, 179689877047297, 11856808685922849, 782369683393860737, 51624542295308885793, 3406437421806992601601, 224773245296966202819873
OFFSET
0,2
COMMENTS
Used in A099369.
Solutions of the Pell equation x^2 - 17y^2 = 1 (x values). After initial term this sequence bisects A041024. See 8*A097316(n-1) with A097316(-1) = 0 for corresponding y values. a(n+1)/a(n) apparently converges to (4+sqrt(17))^2. (See related comments in A088317, which this sequence also bisects.). - Rick L. Shepherd, Jul 31 2006
From a(n) = T(n, 33) (see the formula section) and the de Moivre-Binet formula for T(n,x=33) follows a(n+1)/a(n) = 33 + 8*sqrt(17), which is the conjectured value (4+sqrt(17))^2 given in the previous comment by Rick L. Shepherd. - Wolfdieter Lang, Jun 28 2013
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
Tanya Khovanova, Recursive Sequences
Eric Weisstein's World of Mathematics, Pell Equation
FORMULA
a(n) = 66*a(n-1) - a(n-2), a(-1):= 33, a(0)=1.
a(n) = T(n, 33) = (S(n, 66)-S(n-2, 66))/2 = S(n, 66)-33*S(n-1, 66) with T(n, x), resp. S(n, x), Chebyshev polynomials of the first, resp.second, kind. See A053120 and A049310. S(n, 66)=A097316(n).
a(n) = ((33+8*sqrt(17))^n + (33-8*sqrt(17))^n)/2.
a(n) = Sum_{k=0..floor(n/2)} ((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*33)^(n-2*k), for n>=1, a(0)=1.
G.f.: (1-33*x)/(1-66*x+x^2).
EXAMPLE
a(1)^2 - 17*A121470(1)^2 = 33^2 - 17*8^2 = 1089 - 1088 = 1.
MATHEMATICA
LinearRecurrence[{66, -1}, {1, 33}, 14] (* Ray Chandler, Aug 11 2015 *)
PROG
(PARI) \\ Program uses fact that continued fraction for sqrt(17) = [4, 8, 8, ...].
print1("1, "); forstep(n=2, 40, 2, v=vector(n, i, if(i>1, 8, 4)); print1(contfracpnqn(v)[1, 1], ", ")) \\ Rick L. Shepherd, Jul 31 2006
(PARI) vector(20, n, polchebyshev(n-1, 1, 33)) \\ Joerg Arndt, Jan 01 2021
CROSSREFS
Row 4 of array A188645.
Sequence in context: A180920 A120288 A284112 * A267672 A283533 A294773
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 18 2004
EXTENSIONS
A-number for y values in Pell equation corrected by Wolfdieter Lang, Jun 28 2013
STATUS
approved