OFFSET
0,5
COMMENTS
Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; constant k=f(x, y); and initial term a(0)=1; then for all integers x>=1 and y=[+-]1, k may be irrational, but sequence a(n)=a(n-1)*k-((k-1)/(k^n)) always produces integer sequences; y=-1 results shown here; y=1 results are A188647.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is (1/n) * T_{2*k+1}(n), with the Chebyshev polynomials of the first kind (type T). - Seiichi Manyama, Jan 01 2019
LINKS
FORMULA
A(n,k) = 2 * A188644(n,k) - A(n,k-1).
A(n,k) = Sum_{j=0..k} binomial(2*k+1,2*j+1)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019
EXAMPLE
Square array begins:
| 0 1 2 3 4
-----+---------------------------------------------
1 | 1, 1, 1, 1, 1, ...
2 | 1, 13, 181, 2521, 35113, ...
3 | 1, 33, 1121, 38081, 1293633, ...
4 | 1, 61, 3781, 234361, 14526601, ...
5 | 1, 97, 9505, 931393, 91267009, ...
6 | 1, 141, 20021, 2842841, 403663401, ...
7 | 1, 193, 37441, 7263361, 1409054593, ...
8 | 1, 253, 64261, 16322041, 4145734153, ...
9 | 1, 321, 103361, 33281921, 10716675201, ...
10 | 1, 397, 158005, 62885593, 25028308009, ...
11 | 1, 481, 231841, 111746881, 53861764801, ...
12 | 1, 573, 328901, 188788601, 108364328073, ...
13 | 1, 673, 453601, 305726401, 206059140673, ...
14 | 1, 781, 610741, 477598681, 373481557801, ...
15 | 1, 897, 805505, 723342593, 649560843009, ...
...
MATHEMATICA
A[n_, k_] := 1/n ChebyshevT[2k+1, n];
Table[A[n-k, k], {n, 1, 9}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jan 02 2019, after Seiichi Manyama *)
KEYWORD
nonn,tabl
AUTHOR
Charles L. Hohn, Apr 06 2011
EXTENSIONS
Edited and extended by Seiichi Manyama, Jan 01 2019
STATUS
approved