login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188646
Array of a(n)=a(n-1)*k-((k-1)/(k^n)) where a(0)=1 and k=(sqrt(x^2-1)+x)^2 for integers x>=1.
10
1, 1, 1, 1, 13, 1, 1, 181, 33, 1, 1, 2521, 1121, 61, 1, 1, 35113, 38081, 3781, 97, 1, 1, 489061, 1293633, 234361, 9505, 141, 1, 1, 6811741, 43945441, 14526601, 931393, 20021, 193, 1, 1, 94875313, 1492851361, 900414901, 91267009, 2842841, 37441, 253, 1
OFFSET
0,5
COMMENTS
Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; constant k=f(x, y); and initial term a(0)=1; then for all integers x>=1 and y=[+-]1, k may be irrational, but sequence a(n)=a(n-1)*k-((k-1)/(k^n)) always produces integer sequences; y=-1 results shown here; y=1 results are A188647.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is (1/n) * T_{2*k+1}(n), with the Chebyshev polynomials of the first kind (type T). - Seiichi Manyama, Jan 01 2019
FORMULA
A(n,k) = 2 * A188644(n,k) - A(n,k-1).
A(n,k) = Sum_{j=0..k} binomial(2*k+1,2*j+1)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019
EXAMPLE
Square array begins:
| 0 1 2 3 4
-----+---------------------------------------------
1 | 1, 1, 1, 1, 1, ...
2 | 1, 13, 181, 2521, 35113, ...
3 | 1, 33, 1121, 38081, 1293633, ...
4 | 1, 61, 3781, 234361, 14526601, ...
5 | 1, 97, 9505, 931393, 91267009, ...
6 | 1, 141, 20021, 2842841, 403663401, ...
7 | 1, 193, 37441, 7263361, 1409054593, ...
8 | 1, 253, 64261, 16322041, 4145734153, ...
9 | 1, 321, 103361, 33281921, 10716675201, ...
10 | 1, 397, 158005, 62885593, 25028308009, ...
11 | 1, 481, 231841, 111746881, 53861764801, ...
12 | 1, 573, 328901, 188788601, 108364328073, ...
13 | 1, 673, 453601, 305726401, 206059140673, ...
14 | 1, 781, 610741, 477598681, 373481557801, ...
15 | 1, 897, 805505, 723342593, 649560843009, ...
...
MATHEMATICA
A[n_, k_] := 1/n ChebyshevT[2k+1, n];
Table[A[n-k, k], {n, 1, 9}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jan 02 2019, after Seiichi Manyama *)
CROSSREFS
Column 1 is A082109(n-1).
Cf. A188644, A188647 (f(x, y) as above with y=1).
Diagonal gives A322904.
Sequence in context: A156539 A172300 A022176 * A174791 A015132 A066036
KEYWORD
nonn,tabl
AUTHOR
Charles L. Hohn, Apr 06 2011
EXTENSIONS
Edited and extended by Seiichi Manyama, Jan 01 2019
STATUS
approved