login
A077420
Bisection of Chebyshev sequence T(n,3) (odd part) with Diophantine property.
15
1, 33, 1121, 38081, 1293633, 43945441, 1492851361, 50713000833, 1722749176961, 58522759015841, 1988051057361633, 67535213191279681, 2294209197446147521, 77935577499977736033, 2647515425801796877601
OFFSET
0,2
COMMENTS
(3*a(n))^2 - 2*(2*b(n))^2 = 1 with companion sequence b(n)= A046176(n+1), n>=0 (special solutions of Pell equation).
LINKS
Z. Cerin and G. M. Gianella, On sums of squares of Pell-Lucas Numbers, INTEGERS 6 (2006) #A15
Tanya Khovanova, Recursive Sequences
S. Vidhyalakshmi, V. Krithika, and K. Agalya, On The Negative Pell Equation y^2 = 72x^2 - 8, International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 4, Issue 2, February (2016).
FORMULA
a(n) = 34*a(n-1) - a(n-2), a(-1)=1, a(0)=1.
a(n) = T(2*n+1, 3)/3 = S(n, 34) - S(n-1, 34), with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 34)= A029547(n), T(n, 3)=A001541(n).
G.f.: (1-x)/(1-34*x+x^2).
a(n) = sqrt(8*A046176(n+1)^2 + 1)/3.
a(n) = (k^n)+(k^(-n))-a(n-1) = A003499(2*n)-a(n-1), where k = (sqrt(2)+1)^4 = 17+12*sqrt(2) and a(0)=1. - Charles L. Hohn, Apr 05 2011
a(n) = a(-n-1) = A029547(n)-A029547(n-1) = ((1+sqrt(2))^(4n+2)+(1-sqrt(2))^(4n+2))/6. - Bruno Berselli, Nov 22 2011
MATHEMATICA
LinearRecurrence[{34, -1}, {1, 33}, 20] (* Vincenzo Librandi, Nov 22 2011 *)
a[c_, n_] := Module[{},
p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
d := Denominator[Convergents[Sqrt[c], n p]];
t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
Return[t];
] (* Complement of A041027 *)
a[18, 20] (* Gerry Martens, Jun 07 2015 *)
PROG
(Magma) I:=[1, 33]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
(PARI) Vec((1-x)/(1-34*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Nov 22 2011
(Maxima) makelist(expand(((1+sqrt(2))^(4*n+2)+(1-sqrt(2))^(4*n+2))/6), n, 0, 14); /* _Bruno Berselli, Nov 22 2011 */
CROSSREFS
Cf. A056771 (even part).
Row 34 of array A094954.
Row 3 of array A188646.
Cf. similar sequences listed in A238379.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in A302329. This is the case k=3.
Sequence in context: A187539 A130835 A262101 * A158688 A353114 A294436
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved