login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294436
a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^5.
5
1, 33, 1268, 50600, 1972128, 75121312, 2803732096, 102885494016, 3722920064000, 133152625650176, 4715897847097344, 165643005814853632, 5776871664703455232, 200235592430802124800, 6903358709034568712192, 236882142098621090889728, 8094539021386254685569024
OFFSET
0,2
LINKS
N. J. Calkin, A curious binomial identity, Discr. Math., 131 (1994), 335-337.
M. Hirschhorn, Calkin's binomial identity, Discr. Math., 159 (1996), 273-278.
FORMULA
a(n) ~ n * 2^(5*n - 1). - Vaclav Kotesovec, Jun 07 2019
MAPLE
A:=proc(n, k) local j; add(binomial(n, j), j=0..k); end;
S:=proc(n, p) local i; global A; add(A(n, i)^p, i=0..n); end;
[seq(S(n, 5), n=0..30)];
MATHEMATICA
Table[Sum[Sum[Binomial[n, k], {k, 0, m}]^5, {m, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jun 07 2019 *)
PROG
(PARI) a(n) = sum(m=0, n, sum(k=0, m, binomial(n, k))^5); \\ Michel Marcus, Nov 18 2017
CROSSREFS
Same expression with exponent b instead of 5: A001792 (b=1), A003583 (b=2), A007403 (b=3), A294435 (b=4).
Sequence in context: A077420 A158688 A353114 * A242492 A065424 A071268
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 17 2017
STATUS
approved