OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..300
N. J. Calkin, A curious binomial identity, Discr. Math., 131 (1994), 335-337.
M. Hirschhorn, Calkin's binomial identity, Discr. Math., 159 (1996), 273-278.
FORMULA
a(n) ~ n * 2^(4*n - 1). - Vaclav Kotesovec, Jun 07 2019
MAPLE
A:=proc(n, k) local j; add(binomial(n, j), j=0..k); end;
S:=proc(n, p) local i; global A; add(A(n, i)^p, i=0..n); end;
[seq(S(n, 4), n=0..30)];
MATHEMATICA
Table[Sum[Sum[Binomial[n, k], {k, 0, m}]^4, {m, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jun 07 2019 *)
PROG
(PARI) a(n) = sum(m=0, n, sum(k=0, m, binomial(n, k))^4); \\ Michel Marcus, Nov 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 17 2017
STATUS
approved