login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029547 Expansion of 1/(1-34*x+x^2). 12
1, 34, 1155, 39236, 1332869, 45278310, 1538129671, 52251130504, 1775000307465, 60297759323306, 2048348816684939, 69583562007964620, 2363792759454112141, 80299370259431848174, 2727814796061228725775 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Chebyshev sequence U(n,17)=S(n,34) with Diophantine property.

b(n)^2 - 2*(12*a(n))^2 = 1 with the companion sequence b(n)=A056771(n+1). - Wolfdieter Lang, Dec 11 2002

More generally, for t(m)=m+sqrt(m^2-1) and u(n)=(t(m)^(n+1)-1/t(m)^(n+1))/(t(m)-1/t(m)), we can verify that ((u(n+1)-u(n-1))/2)^2-(m^2-1)*u(n)^2=1. - Bruno Berselli, Nov 21 2011

a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,33}. - Milan Janjic, Jan 26 2015

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..651 (terms 0..200 from Vincenzo Librandi)

R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (34,-1).

FORMULA

a(n) = 34*a(n-1) - a(n-2), a(-1)=0, a(0)=1.

a(n) = S(n, 34) with S(n, x):= U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310. - Wolfdieter Lang, Dec 11 2002

a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap = 17+12*sqrt(2) and am = 17-12*sqrt(2).

a(n) = sum((-1)^k*binomial(n-k, k)*34^(n-2*k), k = 0..floor(n/2)).

a(n) = sqrt((A056771(n+1)^2 -1)/2)/12.

a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) with a(-1)=0, a(0)=1, a(1)=34. Also a(n) = (sqrt(2)/48)*((17+12*sqrt(2))^n-(17-12*sqrt(2))^n) = (sqrt(2)/48)*((3+2*sqrt(2))^(2n+2)-(3-2*sqrt(2))^(2n+2)) = (sqrt(2)/48)*((1+sqrt(2))^(4n+4)-(1-sqrt(2))^(4n+4)). - Antonio Alberto Olivares, Mar 19 2008

a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*33^k. - Philippe Deléham, Feb 10 2012

Product {n >= 0} (1 + 1/a(n)) = 1/4*(4 + 3*sqrt(2)). - Peter Bala, Dec 23 2012

Product {n >= 1} (1 - 1/a(n)) = 2/17*(4 + 3*sqrt(2)). - Peter Bala, Dec 23 2012

MAPLE

with (combinat):seq(fibonacci(4*n, 2)/12, n=1..15); # Zerinvary Lajos, Apr 21 2008

MATHEMATICA

lst={}; Do[AppendTo[lst, GegenbauerC[n, 1, 17]], {n, 0, 8^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)

LinearRecurrence[{34, -1}, {1, 34}, 20] (* Vincenzo Librandi, Nov 22 2011 *)

PROG

(PARI) A029547(n, x=[0, 1], A=[17, 72*4; 1, 17]) = vector(n, i, (x*=A)[1]) \\ M. F. Hasler, May 26 2007

(Sage) [lucas_number1(n, 34, 1) for n in xrange(1, 16)] # Zerinvary Lajos, Nov 07 2009

(MAGMA) I:=[1, 34]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011

CROSSREFS

A091761 is an essentially identical sequence.

Cf. A200441, A200724.

Sequence in context: A248163 A158696 * A091761 A264134 A264019 A009978

Adjacent sequences:  A029544 A029545 A029546 * A029548 A029549 A029550

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 28 02:14 EDT 2017. Contains 284182 sequences.