login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029546
Expansion of 1/( (1-x)*(1-34*x+x^2) ).
11
1, 35, 1190, 40426, 1373295, 46651605, 1584781276, 53835911780, 1828836219245, 62126595542551, 2110475412227490, 71694037420192110, 2435486796874304251, 82734857056306152425, 2810549653117534878200, 95475953348939879706376, 3243371864210838375138585
OFFSET
0,2
COMMENTS
Numbers m such that r = 24*m+1 and 2*r-1 are both squares. - Bruno Berselli, Jul 17 2014
FORMULA
a(n) = A029549(n+1)/6 = A075528(n+1)/3.
From Colin Barker, Mar 02 2016: (Start)
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n > 2.
a(n) = ( (99-70*sqrt(2))*(17-12*sqrt(2))^n - 6 + (99+70*sqrt(2))*(17+12*sqrt(2))^n )/192. (End)
a(n) = ( Pell(2*n+3)^2 - 1)/24 = (Q(4*n+6) - 6)/192, where Q(n) = Pell-Lucas numbers. - G. C. Greubel, Jan 13 2020
Sum_{n>=0} 1/a(n) = 6*(3 - 2*sqrt(2)). - Amiram Eldar, Dec 04 2024
MAPLE
seq(coeff(series(1/( (1-x)*(1-34*x+x^2) ), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 13 2020
MATHEMATICA
LinearRecurrence[{35, -35, 1}, {1, 35, 1190}, 20] (* Vincenzo Librandi, Nov 22 2011 *)
Table[(Fibonacci[2*n+3, 2]^2 -1)/24, {n, 0, 20}] (* G. C. Greubel, Jan 13 2020 *)
PROG
(Magma) I:=[1, 35, 1190]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2) +Self(n-3): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
(PARI) Vec(1/(1-35*x+35*x^2-x^3)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
(Sage) [(lucas_number2(4*n+6, 2, -1) -6)/192 for n in (0..20)] # G. C. Greubel, Jan 13 2020
(GAP) List([0..20], n-> (Lucas(2, -1, 4*n+6)[2] -6)/192 ); # G. C. Greubel, Jan 13 2020
CROSSREFS
Cf. A029547 (first differences), A245031 (see Comments line).
Sequence in context: A046176 A352183 A162847 * A305539 A163218 A163600
KEYWORD
nonn,easy
STATUS
approved