The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029548 Expansion of 1/(1 - 32*x + x^2). 22
1, 32, 1023, 32704, 1045505, 33423456, 1068505087, 34158739328, 1092011153409, 34910198169760, 1116034330278911, 35678188370755392, 1140585993533893633, 36463073604713840864, 1165677769357309014015 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
From Bruno Berselli, Nov 21 2011: (Start)
A Diophantine property of these numbers: ((a(n+1) - a(n-1))/2)^2 - 255*a(n)^2 = 1.
More generally, for t(m) = m + sqrt(m^2-1) and u(n) = (t(m)^(n+1) - 1/t(m)^(n+1))/(t(m) - 1/t(m)), we can verify that ((u(n+1) - u(n-1))/2)^2 - (m^2-1)*u(n)^2 = 1. (End)
a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,31}. - Milan Janjic, Jan 26 2015
LINKS
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = 32*a(n-1) - a(n-2), a(-1)=0, a(0)=1.
a(n) = S(n, 32) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the 2nd kind. See A049310. - Wolfdieter Lang, Nov 29 2002
a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap=16+sqrt(255) and am=16-sqrt(255).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*32^(n-2*k).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*31^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/15*(15 + sqrt(255)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/32*(15 + sqrt(255)). - Peter Bala, Dec 23 2012
MAPLE
seq(simplify(ChebyshevU(n, 16)), n=0..20); # G. C. Greubel, Dec 22 2019
MATHEMATICA
Table[GegenbauerC[n, 1, 16], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[1/(1-32x+x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
ChebyshevU[Range[0, 20], 16] (* G. C. Greubel, Dec 22 2019 *)
PROG
(Sage) [lucas_number1(n, 32, 1) for n in range(1, 16)] # Zerinvary Lajos, Nov 07 2009
(Sage) [chebyshev_U(n, 16) for n in (0..20)] # G. C. Greubel, Dec 22 2019
(Magma) I:=[1, 32]; [n le 2 select I[n] else 32*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
(PARI) vector( 21, n, polchebyshev(n-1, 2, 17) ) \\ G. C. Greubel, Dec 22 2019
(GAP) m:=17;; a:=[1, 2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019
CROSSREFS
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), this sequence (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33), A097725 (m=51).
Sequence in context: A300265 A158617 A171337 * A016745 A189267 A223672
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 20:28 EDT 2024. Contains 373401 sequences. (Running on oeis4.)