login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200442 Expansion of 1/(1-31*x+x^2). 6
1, 31, 960, 29729, 920639, 28510080, 882891841, 27341136991, 846692354880, 26220121864289, 811977085438079, 25145069526716160, 778685178242762881, 24114095455998933151, 746758273957724164800, 23125392397233450175649, 716140406040279231280319 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A Diophantine property of these numbers: (a(n+1)-a(n-1))^2 - 957*a(n)^2 = 4. (See also comment in A200441.)

For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,30}. - Milan Janjic, Jan 26 2015

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..500

Tanya Khovanova, Recursive Sequences.

Index entries for linear recurrences with constant coefficients, signature (31,-1).

FORMULA

G.f.: 1/(1-31*x+x^2).

a(n) = 31*a(n-1)-a(n-2) with a(0)=1, a(1)=31.

a(n) = -a(-n-2) = (t^(n+1)-1/t^(n+1))/(t-1/t) where t=(31+sqrt(957))/2.

a(n) = sum((-1)^k*binomial(n-k, k)*31^(n-2k), k=0..floor(n/2)).

a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*30^k. - Philippe Deléham, Feb 10 2012

Product {n >= 0} (1 + 1/a(n)) = 1/29*(29 + sqrt(957)). - Peter Bala, Dec 23 2012

Product {n >= 1} (1 - 1/a(n)) = 1/62*(29 + sqrt(957)). - Peter Bala, Dec 23 2012

MATHEMATICA

LinearRecurrence[{31, -1}, {1, 31}, 17]

PROG

(PARI)  Vec(1/(1-31*x+x^2)+O(x^17))

(MAGMA) /* By the closed form: */ Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-957); S:=[(((31+r)/2)^n-1/((31+r)/2)^n)/r: n in [1..17]]; [Integers()!S[j]: j in [1..#S]];

(Maxima)  makelist(sum((-1)^k*binomial(n-k, k)*31^(n-2*k), k, 0, floor(n/2)), n, 0, 16);

CROSSREFS

Cf. A029548, A097313, A200441.

Sequence in context: A084330 A238993 A171336 * A207777 A207274 A207767

Adjacent sequences:  A200439 A200440 A200441 * A200443 A200444 A200445

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Nov 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. . Note: Contributor's License Agreement was changed Aug 14 2018.

Last modified August 14 21:07 EDT 2018. Contains 313756 sequences. (Running on oeis4.)