login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200442
Expansion of 1/(1-31*x+x^2).
6
1, 31, 960, 29729, 920639, 28510080, 882891841, 27341136991, 846692354880, 26220121864289, 811977085438079, 25145069526716160, 778685178242762881, 24114095455998933151, 746758273957724164800, 23125392397233450175649, 716140406040279231280319
OFFSET
0,2
COMMENTS
A Diophantine property of these numbers: (a(n+1)-a(n-1))^2 - 957*a(n)^2 = 4. (See also comment in A200441.)
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,30}. - Milan Janjic, Jan 26 2015
FORMULA
G.f.: 1/(1-31*x+x^2).
a(n) = 31*a(n-1)-a(n-2) with a(0)=1, a(1)=31.
a(n) = -a(-n-2) = (t^(n+1)-1/t^(n+1))/(t-1/t) where t=(31+sqrt(957))/2.
a(n) = sum((-1)^k*binomial(n-k, k)*31^(n-2k), k=0..floor(n/2)).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*30^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/29*(29 + sqrt(957)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/62*(29 + sqrt(957)). - Peter Bala, Dec 23 2012
MATHEMATICA
LinearRecurrence[{31, -1}, {1, 31}, 17]
PROG
(PARI) Vec(1/(1-31*x+x^2)+O(x^17))
(Magma) /* By the closed form: */ Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-957); S:=[(((31+r)/2)^n-1/((31+r)/2)^n)/r: n in [1..17]]; [Integers()!S[j]: j in [1..#S]];
(Maxima) makelist(sum((-1)^k*binomial(n-k, k)*31^(n-2*k), k, 0, floor(n/2)), n, 0, 16);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Nov 18 2011
STATUS
approved