The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004189 a(n) = 10*a(n-1) - a(n-2); a(0) = 0, a(1) = 1. 61
 0, 1, 10, 99, 980, 9701, 96030, 950599, 9409960, 93149001, 922080050, 9127651499, 90354434940, 894416697901, 8853812544070, 87643708742799, 867583274883920, 8588189040096401, 85014307126080090, 841554882220704499, 8330534515080964900, 82463790268588944501, 816307368170808480110 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Indices of square numbers which are also generalized pentagonal numbers. If t(n) denotes the n-th triangular number, t(A105038(n))=a(n)*a(n+1). - Robert Phillips (bobanne(AT)bellsouth.net), May 25 2008 The n-th term is a(n) = ((5+sqrt(24))^n - (5-sqrt(24))^n)/(2*sqrt(24)). - Sture Sjöstedt, May 31 2009 For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 10's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011 a(n) and b(n) (A001079) are the nonnegative proper solutions of the Pell equation b(n)^2 - 6*(2*a(n))^2 = +1. See the cross reference to A001079 below. - Wolfdieter Lang, Jun 26 2013 For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,9}. - Milan Janjic, Jan 25 2015 For n > 1, this also gives the number of (n-1)-decimal-digit numbers which avoid a particular two-digit number with distinct digits. For example, there are a(5) = 9701 4-digit numbers which do not include "39" as a substring; see Wikipedia link. - Charles R Greathouse IV, Jan 14 2016 All possible solutions for y in Pell equation x^2 - 24*y^2 = 1. The values for x are given in A001079. - Herbert Kociemba, Jun 05 2022 Dickson on page 384 gives the Diophantine equation "(20) 24x^2 + 1 = y^2" and later states "... three consecutive sets (x_i, y_i) of solutions of (20) or 2x^2 + 1 = 3y^2 satisfy x_{n+1} = 10x_n - x_{n-1}, y_{n+1} = 10y_n - y_{n-1} with (x_1, y_1) = (0, 1) or (1, 1), (x_2, y_2) = (1, 5) or (11, 9), respectively." The first set of values (x_n, y_n) = (A001079(n-1), a(n-1)). - Michael Somos, Jun 19 2023 REFERENCES L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, p. 384. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9. D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 12. E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242. D. Fortin, B-spline Toeplitz inverse under corner perturbations, International Journal of Pure and Applied Mathematics, Volume 77, No. 1, 2012, 107-118. - From N. J. A. Sloane, Oct 22 2012 A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=10, q=-1. Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7. Tanya Khovanova, Recursive Sequences Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019. Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eq.(44), lhs, m=12. Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164. Robert Phillips, Polynomials of the form 1+4ke+4ke^2, 2008. Wikipedia, Curse of 39 Jianqiang Zhao, Finite Multiple zeta Values and Finite Euler Sums, arXiv:1507.04917 [math.NT], 2015. Index entries for sequences related to Chebyshev polynomials. Index entries for linear recurrences with constant coefficients, signature (10,-1). FORMULA a(n) = S(2*n-1, sqrt(12))/sqrt(12) = S(n-1, 10); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0. A001079(n) = sqrt(24*(a(n)^2)+1), that is a(n) = sqrt((A001079(n)^2-1)/24). From Barry E. Williams, Aug 18 2000: (Start) a(n) = ( (5+2*sqrt(6))^n - (5-2*sqrt(6))^n )/(4*sqrt(6)). G.f.: x/(1-10*x+x^2). (End) a(-n) = -a(n). - Michael Somos, Sep 05 2006 From Mohamed Bouhamida, May 26 2007: (Start) a(n) = 9*(a(n-1) + a(n-2)) - a(n-3). a(n) = 11*(a(n-1) - a(n-2)) + a(n-3). a(n) = 10*a(n-1) - a(n-2). (End) a(n+1) = Sum_{k=0..n} A101950(n,k)*9^k. - Philippe Deléham, Feb 10 2012 From Peter Bala, Dec 23 2012: (Start) Product {n >= 1} (1 + 1/a(n)) = 1/2*(2 + sqrt(6)). Product {n >= 2} (1 - 1/a(n)) = 1/5*(2 + sqrt(6)). (End) a(n) = (A054320(n-1) + A072256(n))/2. - Richard R. Forberg, Nov 21 2013 a(2*n - 1) = A046173(n). E.g.f.: exp(5*x)*sinh(2*sqrt(6)*x)/(2*sqrt(6)). - Stefano Spezia, Dec 12 2022 a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*8^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*12^k. - Peter Bala, Jul 18 2023 EXAMPLE a(2)=10 and (3(-8)^2-(-8))/2=10^2, a(3)=99 and (3(81)^2-(81))/2=99^2. - Michael Somos, Sep 05 2006 G.f. = x + 10*x^2 + 99*x^3 + 980*x^4 + 9701*x^5 + 96030*x^6 + ... MAPLE A004189 := proc(n) option remember; if n <= 1 then n ; else 10*procname(n-1)-procname(n-2) ; end if; end proc: seq(A004189(n), n=0..20) ; # R. J. Mathar, Apr 30 2017 seq( simplify(ChebyshevU(n-1, 5)), n=0..20); # G. C. Greubel, Dec 23 2019 MATHEMATICA Table[GegenbauerC[n-1, 1, 5], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008; modified by G. C. Greubel, Jun 06 2019 *) LinearRecurrence[{10, -1}, {0, 1}, 20] (* Jean-François Alcover, Nov 15 2017 *) ChebyshevU[Range[21] -2, 5] (* G. C. Greubel, Dec 23 2019 *) PROG (PARI) {a(n) = subst(poltchebi(n+1) - 5*poltchebi(n), 'x, 5) / 24}; /* Michael Somos, Sep 05 2006 */ (PARI) a(n)=([9, 1; 8, 1]^(n-1)*[1; 1])[1, 1] \\ Charles R Greathouse IV, Jan 14 2016 (PARI) vector(21, n, n--; polchebyshev(n-1, 2, 5) ) \\ G. C. Greubel, Dec 23 2019 (Sage) [lucas_number1(n, 10, 1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008 (Sage) [chebyshev_U(n-1, 5) for n in (0..20)] # G. C. Greubel, Dec 23 2019 (Magma) [ n eq 1 select 0 else n eq 2 select 1 else 10*Self(n-1)-Self(n-2): n in [1..20] ]; // Vincenzo Librandi, Aug 19 2011 (GAP) m:=5;; a:=[0, 1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019 CROSSREFS Cf. A001079, A001109, A001353, A001906, A004187, A004254, A018913, A046173, A049310, A054320, A072256, A101950, A105138, A108741 (squares). Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), this sequence (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33). Cf. A323182. Sequence in context: A370043 A081109 A242633 * A322054 A179558 A179556 Adjacent sequences: A004186 A004187 A004188 * A004190 A004191 A004192 KEYWORD easy,nonn AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 14 12:31 EDT 2024. Contains 375921 sequences. (Running on oeis4.)