login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097316 Chebyshev U(n,x) polynomial evaluated at x=33. 22
1, 66, 4355, 287364, 18961669, 1251182790, 82559102471, 5447649580296, 359462313197065, 23719065021425994, 1565098829100918539, 103272803655639197580, 6814439942443086121741, 449649763397588044837326 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used to form integer solutions of Pell equation a^2 - 17*b^2 =-1. See A078989 with A078988.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..548

R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (66,-1).

FORMULA

a(n) = 66*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.

a(n) = S(n, 66) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. See A049310.

G.f.: 1/(1-66*x+x^2).

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*66^(n-2*k).

a(n) = ((33+8*sqrt(17))^(n+1) - (33-8*sqrt(17))^(n+1))/(16*sqrt(17)).

MAPLE

seq( simplify(ChebyshevU(n, 33)), n=0..20); # G. C. Greubel, Dec 22 2019

MATHEMATICA

LinearRecurrence[{66, -1}, {1, 66}, 14] (* Ray Chandler, Aug 11 2015 *)

ChebyshevU[Range[21] -1, 33] (* G. C. Greubel, Dec 22 2019 *)

PROG

(PARI) vector( 21, n, polchebyshev(n-1, 2, 33) ) \\ G. C. Greubel, Dec 22 2019

(MAGMA) m:=33; I:=[1, 2*m]; [n le 2 select I[n] else 2*m*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 22 2019

(Sage) [chebyshev_U(n, 33) for n in (0..20)] # G. C. Greubel, Dec 22 2019

(GAP) m:=33;; a:=[1, 2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 22 2019

CROSSREFS

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), this sequence (m=33).

Sequence in context: A004998 A239409 A295592 * A239337 A099639 A003555

Adjacent sequences:  A097313 A097314 A097315 * A097317 A097318 A097319

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 13:00 EDT 2020. Contains 337272 sequences. (Running on oeis4.)