login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097316 Chebyshev U(n,x) polynomial evaluated at x=33. 5
1, 66, 4355, 287364, 18961669, 1251182790, 82559102471, 5447649580296, 359462313197065, 23719065021425994, 1565098829100918539, 103272803655639197580, 6814439942443086121741, 449649763397588044837326 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used to form integer solutions of Pell equation a^2 - 17*b^2 =-1. See A078989 with A078988.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..548

R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (66, -1).

FORMULA

a(n) = 66*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.

a(n) = S(n, 66) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. See A049310.

G.f.: 1/(1-66*x+x^2).

a(n)= sum((-1)^k*binomial(n-k, k)*66^(n-2*k), k=0..floor(n/2)), n>=0.

a(n) = ((33+8*sqrt(17))^(n+1) - (33-8*sqrt(17))^(n+1))/(16*sqrt(17)).

MATHEMATICA

LinearRecurrence[{66, -1}, {1, 66}, 14] (* Ray Chandler, Aug 11 2015 *)

CROSSREFS

Sequence in context: A265454 A004998 A239409 * A239337 A099639 A003555

Adjacent sequences:  A097313 A097314 A097315 * A097317 A097318 A097319

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 25 15:14 EDT 2017. Contains 284082 sequences.