login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A295592
Numbers k such that Bernoulli number B_{k} has denominator 64722.
1
66, 3894, 4686, 5214, 6402, 8382, 9174, 9834, 10362, 10758, 11022, 13134, 14718, 17754, 20262, 20922, 22242, 23034, 23298, 25014, 25278, 25674, 26466, 27786, 28974, 29634, 30162, 31614, 34386, 36102, 37554, 37686, 38742, 39534, 40722, 42438, 44418, 45606, 46266
OFFSET
1,1
COMMENTS
64722 = 2*3*7*23*67.
All terms are multiples of a(1) = 66.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 62483.
LINKS
EXAMPLE
Bernoulli B_{66} is
1472600022126335654051619428551932342241899101/64722, hence 66 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 64722);
# Alternative: # according to Robert Israel code in A282773
with(numtheory): filter:= n ->
select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 23, 67}:
select(filter, [seq(i, i=1..10^5)]);
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Nov 24 2017
STATUS
approved