login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A295589
Numbers k such that Bernoulli number B_{k} has denominator 33330.
1
100, 1700, 7100, 16700, 22300, 25700, 28300, 31300, 31700, 33100, 35300, 37900, 38300, 38900, 39700, 44900, 45700, 47900, 52100, 56900, 58700, 60700, 66100, 75100, 75700, 78700, 79700, 83900, 85700, 85900, 88100, 90700, 96700, 99100
OFFSET
1,1
COMMENTS
33330= 2*3*5*11*101.
All terms are multiples of a(1) = 100.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 28859.
LINKS
EXAMPLE
Bernoulli B_{100} is
-945980378191221252952274330694937218727028415330669361333856962043113954151972 47711/33330, hence 100 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 33330);
# Alternative: # according to Robert Israel code in A282773
with(numtheory): filter:= n ->
select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 11, 101}:
select(filter, [seq(i, i=1..10^5)]);
MATHEMATICA
Select[Range[100, 100000, 100], Denominator[BernoulliB[#]]==33330&] (* Harvey P. Dale, Aug 05 2022 *)
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Nov 24 2017
STATUS
approved