The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295588 Numbers k such that Bernoulli number B_{k} has denominator 14322. 1
 30, 1770, 3810, 4170, 4470, 4890, 5910, 5970, 6810, 8070, 9210, 10590, 11370, 11670, 12030, 12990, 13470, 13890, 14370, 14970, 15630, 16890, 17070, 17610, 18510, 18570, 19290, 19410, 20190, 20310, 21270, 22710, 24810, 25710, 26310, 27570, 27870, 29010, 29490, 29730 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 14322 = 2*3*7*11*31. All terms are multiples of a(1) = 30. For these numbers numerator(B_{k}) mod denominator(B_{k}) = 12899. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..1000 EXAMPLE Bernoulli B_{30} is 8615841276005/14322, hence 30 is in the sequence. MAPLE with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 14322); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 11, 31}: select(filter, [seq(i, i=1..10^5)]); CROSSREFS Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271634, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186, A272369. Sequence in context: A222719 A089550 A007804 * A108298 A202384 A202369 Adjacent sequences:  A295585 A295586 A295587 * A295589 A295590 A295591 KEYWORD nonn,easy AUTHOR Paolo P. Lava, Nov 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 02:20 EDT 2021. Contains 343636 sequences. (Running on oeis4.)