login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A295588
Numbers k such that Bernoulli number B_{k} has denominator 14322.
1
30, 1770, 3810, 4170, 4470, 4890, 5910, 5970, 6810, 8070, 9210, 10590, 11370, 11670, 12030, 12990, 13470, 13890, 14370, 14970, 15630, 16890, 17070, 17610, 18510, 18570, 19290, 19410, 20190, 20310, 21270, 22710, 24810, 25710, 26310, 27570, 27870, 29010, 29490, 29730
OFFSET
1,1
COMMENTS
14322 = 2*3*7*11*31.
All terms are multiples of a(1) = 30.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 12899.
LINKS
EXAMPLE
Bernoulli B_{30} is 8615841276005/14322, hence 30 is in the sequence.
MAPLE
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do
if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 14322);
# Alternative: # according to Robert Israel code in A282773
with(numtheory): filter:= n ->
select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 11, 31}:
select(filter, [seq(i, i=1..10^5)]);
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Nov 24 2017
STATUS
approved