OFFSET
1,1
COMMENTS
From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
LINKS
EXAMPLE
The numbers m = 10, 50 belong to the list because B_10 = 5/66 and B_50 = 495057205241079648212477525/66. - Petros Hadjicostas, Jun 06 2020
MATHEMATICA
denoBn[n_?EvenQ] := Times @@ Select[Prime /@ Range[PrimePi[n] + 1], Divisible[n, # - 1] & ]; Select[ Range[10, 4000, 10], denoBn[#] == 66 &] (* Jean-François Alcover, Jun 27 2012, after comments *)
Flatten[Position[BernoulliB[Range[4000]], _?(Denominator[#]==66&)]] (* Harvey P. Dale, Nov 17 2014 *)
PROG
(PARI) /* define indicator function */ a(n)=local(s); s=0; fordiv(n, d, s+=isprime(d+1)&(d>2)&(d!=10)); !s /* get sequence */ an=vector(45, n, 0); m=0; forstep(n=10, 4000, 10, if(a(n), an[ m++ ]=n)); for(n=1, 42, print1(an[ n ]", "))
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Michael Somos
Name edited by Petros Hadjicostas, Jun 06 2020
STATUS
approved