login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051230
Numbers m such that the Bernoulli number B_m has denominator 66.
38
10, 50, 170, 370, 470, 590, 610, 670, 710, 730, 790, 850, 1010, 1070, 1270, 1370, 1390, 1490, 1630, 1670, 1850, 1970, 1990, 2230, 2270, 2290, 2570, 2630, 2690, 2770, 2830, 2890, 2950, 3050, 3070, 3110, 3130, 3170, 3310, 3350, 3470, 3530
OFFSET
1,1
COMMENTS
From the von Staudt-Clausen theorem, denominator(B_{2*m}) = product of primes p such that (p-1)|2*m.
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 75.
EXAMPLE
The numbers m = 10, 50 belong to the list because B_10 = 5/66 and B_50 = 495057205241079648212477525/66. - Petros Hadjicostas, Jun 06 2020
MATHEMATICA
denoBn[n_?EvenQ] := Times @@ Select[Prime /@ Range[PrimePi[n] + 1], Divisible[n, # - 1] & ]; Select[ Range[10, 4000, 10], denoBn[#] == 66 &] (* Jean-François Alcover, Jun 27 2012, after comments *)
Flatten[Position[BernoulliB[Range[4000]], _?(Denominator[#]==66&)]] (* Harvey P. Dale, Nov 17 2014 *)
PROG
(PARI) /* define indicator function */ a(n)=local(s); s=0; fordiv(n, d, s+=isprime(d+1)&(d>2)&(d!=10)); !s /* get sequence */ an=vector(45, n, 0); m=0; forstep(n=10, 4000, 10, if(a(n), an[ m++ ]=n)); for(n=1, 42, print1(an[ n ]", "))
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Michael Somos
Name edited by Petros Hadjicostas, Jun 06 2020
STATUS
approved