The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A237655 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-2)*Fibonacci(n+2) * x^n/n ). 2
 1, 10, 50, 175, 510, 1376, 3625, 9500, 24875, 65125, 170500, 446375, 1168625, 3059500, 8009875, 20970125, 54900500, 143731375, 376293625, 985149500, 2579154875, 6752315125, 17677790500, 46281056375, 121165378625, 317215079500, 830479859875, 2174224500125, 5692193640500, 14902356421375, 39014875623625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Given g.f. A(x), note that A(x)^(1/5) is not an integer series. LINKS Fung Lam, Table of n, a(n) for n = 0..2000 FORMULA G.f.: (1+x)^7 / (1-3*x+x^2). a(n) = 3*a(n-1) - a(n-2), n>=8. - Fung Lam, May 19 2014 EXAMPLE G.f.: A(x) = 1 + 10*x + 50*x^2 + 175*x^3 + 510*x^4 + 1376*x^5 + 3625*x^6 + ... where the logarithm begins: log(A(x)) = 5*1*2*x + 5*0*3*x^2/2 + 5*1*5*x^3/3 + 5*1*8*x^4/4 + 5*2*13*x^5/5 + 5*3*21*x^6/6 + 5*5*34*x^7/7 + 5*8*55*x^8/8 + 5*13*89*x^9/9 + ... PROG (PARI) {a(n)=polcoeff(exp(sum(m=1, n, 5*fibonacci(m-2)*fibonacci(m+2) *x^m/m) +x*O(x^n)), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A237654, A054888. Sequence in context: A051230 A008413 A006542 * A261648 A086462 A201830 Adjacent sequences:  A237652 A237653 A237654 * A237656 A237657 A237658 KEYWORD nonn AUTHOR Paul D. Hanna, May 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 07:11 EST 2020. Contains 332159 sequences. (Running on oeis4.)