login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237652
G.f. satisfies: [x^n] A(x)^(n^2) = [x^n] A(x)^(n^2-1) for n>1 with A(0)=A'(0)=1.
1
1, 1, -3, 20, -245, 4290, -114422, 4086800, -203647509, 12920587070, -1053926397590, 105178069321944, -12765014959365682, 1838898931467398164, -311221726754896488780, 61047560951879121055296, -13747598006865584455353165, 3521759025274977423306328182, -1018406456608128511401443183654
OFFSET
0,3
LINKS
EXAMPLE
G.f.: A(x) = 1 + x - 3*x^2 + 20*x^3 - 245*x^4 + 4290*x^5 - 114422*x^6 +...
The coefficients in relevant powers of g.f. A(x) begin:
A^3: [1, 3, (-6), 43, -597, 11127, -313038, 11486268, ...];
A^4: [1, 4, (-6), 48, -721, 13836, -399342, 14835168, ...];
...
A^8: [1, 8, 4, (48), -1022, 21328, -677040, 26240352, ...];
A^9: [1, 9, 9, (48), -1071, 22572, -732768, 28655712, ...];
...
A^15: [1, 15, 60, 125, (-1260), 26508, -986720, 40214775, ...];
A^16: [1, 16, 72, 160, (-1260), 26688, -1018704, 41720576, ...];
...
A^24: [1, 24, 204, 848, 54, (25680), -1211936, 50397024, ...];
A^25: [1, 25, 225, 1000, 525, (25680), -1230900, 51117200, ...];
...
A^35: [1, 35, 490, 3675, 14035, 52927, (-1360590), 54736260, ...];
A^36: [1, 36, 522, 4080, 16695, 61452, (-1360590), 54781344, ...];
...
A^48: [1, 48, 984, 11488, 82428, 399936, -450096, (53190144), ...];
A^49: [1, 49, 1029, 12348, 91679, 460110, -217266, (53190144), ...];
...
which illustrates [x^n] A(x)^(n^2-1) = [x^n] A(x)^(n^2) for n>1.
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[ #A]=(Vec(Ser(A)^((#A-1)^2-1))-Vec(Ser(A)^((#A-1)^2)))[ #A]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A219541 A200527 A237431 * A256018 A227469 A349928
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 07 2014
STATUS
approved