OFFSET
0,4
COMMENTS
After initial term, equals signed A003319 (indecomposable permutations).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..449
FORMULA
a(n) = (2-n) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
a(n) = (-1)^(n-1)*A003319(n) for n>=1.
G.f.: A(x) = 1/[Sum_{n>=0} (-1)^n*n!*x^n].
G.f. satisfies: [x^(n+1)] A(x)^n = (-1)^n*n*A075834(n+1) for n>=0.
From Sergei N. Gladkovskii, Jun 24 2012 to May 26 2013: (Start)
Continued fractions:
Let A(x) be the g.f., then A(x) = 1-x/U(0), where U(k) = x-1+x*k+(k+2)*x/U(k+1).
A(x) = 1/U(0), where U(k) = 1 - x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1)- 1/U(k+1))).
G.f.: U(0), where U(k)= 1 + x*(k+1)/(1 + x*(k+1)/U(k+1)).
G.f.: 2/(G(0) + 1), where G(k)= 1 - x*(k+1)/(1 - 1/(1 + 1/G(k+1))).
G.f.: x*G(0), where G(k)=1/x + 2*k + 1 - (k+1)^2/G(k+1).
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) - 1/G(k+1))). (End)
EXAMPLE
G.f.: A(x) = 1 + x - x^2 + 3*x^3 - 13*x^4 + 71*x^5 - 461*x^6 +-...
1/A(x) = 1 - x + 2*x^2 - 6*x^3 + 24*x^4 +...+ (-1)^n*n!*x^n +...
...
Coefficients of powers of g.f. A(x) begin:
A^1: 1,1,(-1),3,-13,71,-461,3447,-29093,273343,-2829325,...;
A^2: 1,2,(-1),(4),-19,110,-745,5752,-49775,476994,-5016069,...;
A^3: 1,3, 0, (4),(-21),129,-910,7242,-64155,626319,-6685548,...;
A^4: 1,4, 2, 4, (-21),(136),-996,8152,-73811,733244,-7938186,...;
A^5: 1,5, 5, 5, -20, (136),(-1030),8650,-79925,807055,-8854741,...;
A^6: 1,6, 9, 8, -18, 132, (-1030),(8856),-83385,855010,-9500385,...;
A^7: 1,7,14,14, -14, 126, -1008, (8856),(-84861),882805,-9927890,...;
A^8: 1,8,20,24, -6, 120, -972, 8712, (-84861),(894928),-10180120,...;
A^9: 1,9,27,39,9,117,-927,8469,-83772,(894928),(-10291986),...;
A^10:1,10,35,60,35,122,-875,8160,-81890,885620,(-10291986),...; ...
where coefficients [x^n] A(x)^n and [x^n] A(x)^(n-1) are
enclosed in parenthesis and equal (-1)^n*n*A075834(n+1):
[ -1,4,-21,136,-1030,8856,-84861,894928,-10291986,128165720,...];
compare to A075834:
[1,1,1,2,7,34,206,1476,12123,111866,1143554,12816572,...]
and also to the logarithmic derivative of A075834:
[1,1,4,21,136,1030,8856,84861,894928,10291986,128165720,...].
MATHEMATICA
b[0] = 0; b[n_] := b[n] = n!-Sum[k!*b[n-k], {k, 1, n-1}]; a[0] = 1; a[n_] := (-1)^(n+1)*b[n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 07 2014, from 2nd formula *)
PROG
(PARI) a(n)=polcoeff(1/sum(k=0, n, (-1)^k*k!*x^k +x*O(x^n)), n)
(PARI) {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[ #A]=(Vec(Ser(A)^(#A-2))-Vec(Ser(A)^(#A-1)))[ #A]); A[n+1]}
(Maxima)
G(n, k):=(if n=k then 1 else if k=1 then (-sum(binomial(n-1, k-1)*G(n, k), k, 2, n)) else sum(G(i+1, 1)*G(n-i-1, k-1), i, 0, n-k));
makelist(G(n, 1), n, 1, 10); /* Vladimir Kruchinin, Mar 07 2014 */
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 30 2009
STATUS
approved