login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158882
G.f. A(x) satisfies: [x^n] A(x)^n = [x^n] A(x)^(n-1) for n>1 with A(0)=A'(0)=1.
7
1, 1, -1, 3, -13, 71, -461, 3447, -29093, 273343, -2829325, 31998903, -392743957, 5201061455, -73943424413, 1123596277863, -18176728317413, 311951144828863, -5661698774848621, 108355864447215063, -2181096921557783605
OFFSET
0,4
COMMENTS
After initial term, equals signed A003319 (indecomposable permutations).
LINKS
FORMULA
a(n) = (2-n) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
a(n) = (-1)^(n-1)*A003319(n) for n>=1.
G.f.: A(x) = 1/[Sum_{n>=0} (-1)^n*n!*x^n].
G.f. satisfies: [x^(n+1)] A(x)^n = (-1)^n*n*A075834(n+1) for n>=0.
From Sergei N. Gladkovskii, Jun 24 2012 to May 26 2013: (Start)
Continued fractions:
Let A(x) be the g.f., then A(x) = 1-x/U(0), where U(k) = x-1+x*k+(k+2)*x/U(k+1).
A(x) = 1/U(0), where U(k) = 1 - x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1)- 1/U(k+1))).
G.f.: U(0), where U(k)= 1 + x*(k+1)/(1 + x*(k+1)/U(k+1)).
G.f.: 2/(G(0) + 1), where G(k)= 1 - x*(k+1)/(1 - 1/(1 + 1/G(k+1))).
G.f.: x*G(0), where G(k)=1/x + 2*k + 1 - (k+1)^2/G(k+1).
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) - 1/G(k+1))). (End)
EXAMPLE
G.f.: A(x) = 1 + x - x^2 + 3*x^3 - 13*x^4 + 71*x^5 - 461*x^6 +-...
1/A(x) = 1 - x + 2*x^2 - 6*x^3 + 24*x^4 +...+ (-1)^n*n!*x^n +...
...
Coefficients of powers of g.f. A(x) begin:
A^1: 1,1,(-1),3,-13,71,-461,3447,-29093,273343,-2829325,...;
A^2: 1,2,(-1),(4),-19,110,-745,5752,-49775,476994,-5016069,...;
A^3: 1,3, 0, (4),(-21),129,-910,7242,-64155,626319,-6685548,...;
A^4: 1,4, 2, 4, (-21),(136),-996,8152,-73811,733244,-7938186,...;
A^5: 1,5, 5, 5, -20, (136),(-1030),8650,-79925,807055,-8854741,...;
A^6: 1,6, 9, 8, -18, 132, (-1030),(8856),-83385,855010,-9500385,...;
A^7: 1,7,14,14, -14, 126, -1008, (8856),(-84861),882805,-9927890,...;
A^8: 1,8,20,24, -6, 120, -972, 8712, (-84861),(894928),-10180120,...;
A^9: 1,9,27,39,9,117,-927,8469,-83772,(894928),(-10291986),...;
A^10:1,10,35,60,35,122,-875,8160,-81890,885620,(-10291986),...; ...
where coefficients [x^n] A(x)^n and [x^n] A(x)^(n-1) are
enclosed in parenthesis and equal (-1)^n*n*A075834(n+1):
[ -1,4,-21,136,-1030,8856,-84861,894928,-10291986,128165720,...];
compare to A075834:
[1,1,1,2,7,34,206,1476,12123,111866,1143554,12816572,...]
and also to the logarithmic derivative of A075834:
[1,1,4,21,136,1030,8856,84861,894928,10291986,128165720,...].
MATHEMATICA
b[0] = 0; b[n_] := b[n] = n!-Sum[k!*b[n-k], {k, 1, n-1}]; a[0] = 1; a[n_] := (-1)^(n+1)*b[n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 07 2014, from 2nd formula *)
PROG
(PARI) a(n)=polcoeff(1/sum(k=0, n, (-1)^k*k!*x^k +x*O(x^n)), n)
(PARI) {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[ #A]=(Vec(Ser(A)^(#A-2))-Vec(Ser(A)^(#A-1)))[ #A]); A[n+1]}
(Maxima)
G(n, k):=(if n=k then 1 else if k=1 then (-sum(binomial(n-1, k-1)*G(n, k), k, 2, n)) else sum(G(i+1, 1)*G(n-i-1, k-1), i, 0, n-k));
makelist(G(n, 1), n, 1, 10); /* Vladimir Kruchinin, Mar 07 2014 */
CROSSREFS
Cf. A003319, A075834, A159311, variant: A158883.
Sequence in context: A126390 A272428 A167894 * A233824 A003319 A192239
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 30 2009
STATUS
approved