login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167894
Expansion of g.f.: 1/(Sum_{k >= 0} k!*x^k).
6
1, -1, -1, -3, -13, -71, -461, -3447, -29093, -273343, -2829325, -31998903, -392743957, -5201061455, -73943424413, -1123596277863, -18176728317413, -311951144828863, -5661698774848621, -108355864447215063
OFFSET
0,4
COMMENTS
Essentially the same as A003319, which is the main entry for these numbers. - N. J. A. Sloane, Jun 11 2013
REFERENCES
M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 40.
LINKS
FORMULA
a(n) = - Sum_{i=0..n-1} a(i)*(n-i)! for n > 0 with a(0) = 1 - Vladimir Kruchinin, Oct 10 2024
From Sergei N. Gladkovskii, Jun 24 2012, Oct 15 2012, Nov 18 2012, Dec 26 2012, Apr 25 2013, May 29 2013, Aug 08 2013, Nov 19 2013: (Start) Continued fractions:
G.f.: 1 - x/Q(0), where Q(k) = 1 - (k+1)*x/(1 - (k+2)*x/Q(k+1)).
G.f.: U(0) where U(k) = 1 - x*(k+1)/(1 - x*(k+1)/U(k+1)).
G.f.: 1/G(0) where G(k) = 1 + x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))).
G.f.: A(x) = 1 - x/G(0) where G(k) = 1 + (k+1)*x - x*(k+2)/G(k+1).
G.f.: x*Q(0), where Q(k) = 1/x - 1 - 2*k - (k+1)^2/Q(k+1).
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))).
G.f.: 2/Q(0), where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )).
G.f.: conjecture: Q(0), where Q(k) = 1 + k*x - (k+1)*x/Q(k+1). (End)
a(n) ~ -n! * (1 - 2/n - 1/n^2 - 5/n^3 - 32/n^4 - 253/n^5 - 2381/n^6 - 25912/n^7 - 319339/n^8 - 4388949/n^9 - 66495386/n^10 - ...). - Vaclav Kotesovec, Dec 08 2020
MATHEMATICA
CoefficientList[Series[1/(Sum[k!*x^k, {k, 0, 25}]), {x, 0, 20}], x] (* G. C. Greubel, Jun 30 2016 *)
PROG
(Maxima) a(n) := if n=0 then 1 else -sum( a(i)*(n-i)!, i, 0, n-1); \\ Vladimir Kruchinin, Oct 10 2024
(Sage)
def A167894_list(len):
R, C = [1], [1]+[0]*(len-1)
for n in (1..len-1):
for k in range(n, 0, -1):
C[k] = C[k-1] * k
C[0] = -sum(C[k] for k in (1..n))
R.append(C[0])
return R
print(A167894_list(20)) # Peter Luschny, Feb 19 2016
(Sage) m=20; (1/sum(factorial(k)*x^k for k in range(m+1))).series(x, m).coefficients(x, sparse=False) # G. C. Greubel, Feb 07 2019
(PARI) m=20; my(x='x+O('x^m)); Vec(1/sum(k=0, m+1, k!*x^k)) \\ G. C. Greubel, Feb 07 2019
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(&+[Factorial(k)*x^k: k in [0..m+1]]) )); // G. C. Greubel, Feb 07 2019
CROSSREFS
Sequence in context: A122455 A126390 A272428 * A158882 A233824 A003319
KEYWORD
sign
AUTHOR
Philippe Deléham, Nov 15 2009
STATUS
approved