login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159311
G.f. A(x) satisfies: Sum_{n>=0} n!*x^n/A(x)^n = 1/(1-x).
3
1, 1, 2, 6, 26, 150, 1066, 8862, 83506, 874302, 10035538, 125082870, 1680770250, 24211249062, 372151797498, 6080329604238, 105238649649762, 1923853815102030, 37047429233963170, 749689860387252966
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = exp( Sum_{n>=1} [(n-1)*a(n) + 1]*x^n/n ).
G.f. satisfies: x*A'(x) = A(x)*(1/(1-x) - A(x))/(1 - A(x)).
G.f.: A(x) = x/Series_Reversion(G(x)) so that G(x/A(x)) = x where G(x) = g.f. of A003319 (indecomposable permutations).
a(n) ~ n*n!/exp(1) * (1 - 2/n - 3/n^2 - 49/(3*n^3) - 379/(3*n^4) - 18509/(15*n^5)). - Vaclav Kotesovec, Aug 01 2015
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 26*x^4 + 150*x^5 + 1066*x^6 +...
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 79*x^4/4 + 601*x^5/5 + 5331*x^6/2 +...
where coefficients of log(A(x)) is given by (n-1)*a(n) + 1:
3 = 1*2 + 1, 13 = 2*6 + 1, 79 = 3*26 + 1, 601 = 4*15 + 1, 5331 = 5*1066 + 1.
Let G(x) = g.f. of A003319, then G(x/A(x)) = x where:
G(x) = x + x^2 + 3*x^3 + 13*x^4 + 71*x^5 + 461*x^6 + 3447*x^7 +...
and G(x) = 1 - 1/(1 + x + 2!*x^2 + 3!*x^3 + 4!*x^4 +...).
PROG
(PARI) {a(n)=local(G003319=1-1/sum(k=0, n+1, k!*x^k+x^2*O(x^n))); polcoeff(x/serreverse(G003319), n)}
CROSSREFS
Sequence in context: A247224 A052859 A103937 * A000629 A185994 A032187
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 16 2009
STATUS
approved