login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103937
Number of unrooted n-edge maps in the plane (planar with a distinguished outside face).
0
2, 6, 26, 150, 1032, 8074, 67086, 586752, 5317226, 49592424, 473357994, 4606116310, 45554761836, 456848968518, 4637014782748, 47563495004742, 492422043299964, 5140194991046122, 54053208147441474, 572191817441284272
OFFSET
1,1
REFERENCES
V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
LINKS
V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
FORMULA
a(n)=(1/(2n))[3^n*binomial(2n, n)/(n+1) +sum_{0<k<n, k|n}phi(n/k)3^k*binomial(2k, k)]+q(n) where phi is the Euler function A000010, q(n)=0 if n is even and q(n)=3^((n-1)/2)binomial(n-1, (n-1)/2)/(n+1) if n is odd.
MATHEMATICA
a[n_] := (1/(2n)) (3^n Binomial[2n, n]/(n+1) + Sum[Boole[0<k<n] EulerPhi[ n/k] 3^k Binomial[2k, k], {k, Divisors[n]}]) + q[n];
q[n_] := If[EvenQ[n], 0, 3^((n-1)/2) Binomial[n-1, (n-1)/2]/(n+1)];
Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)
CROSSREFS
Sequence in context: A375629 A247224 A052859 * A159311 A000629 A185994
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Mar 17 2005
STATUS
approved