login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103940
Number of unrooted bipartite n-edge maps in the plane (planar with a distinguished outside face).
3
1, 1, 2, 5, 18, 72, 368, 1982, 11514, 69270, 430384, 2736894, 17752884, 117039548, 782480424, 5294705752, 36206357114, 249894328848, 1739030128872, 12191512867814, 86037243899240, 610827161152012, 4360291880624504, 31280354620428378, 225427088761560916, 1631398499577667252
OFFSET
0,3
COMMENTS
Bipartite planar maps are dual to Eulerian planar maps.
REFERENCES
V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
LINKS
V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
FORMULA
For n > 0, a(n) = (1/(2n))*[2^(n-1)*binomial(2n, n)/(n+1) + Sum_{0<k<n, k|n} phi(n/k)*d(n/k)*2^(k-1)*binomial(2k, k)] + q(n) where phi is the Euler function A000010, d(n)=2, q(n)=0 if n is even and d(n)=1, q(n)=2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1) if n is odd.
MATHEMATICA
a[n_] := (1/(2 n)) (2^(n - 1) Binomial[2 n, n]/(n+1) + Sum[Boole[0 < k < n] EulerPhi[n/k] d[n/k] 2^(k-1) Binomial[2k, k], {k, Divisors[n]}]) + q[n];
d[n_] := If[EvenQ[n], 2, 1];
q[n_] := If[EvenQ[n], 0, 2^((n-1)/2) Binomial[n-1, (n-1)/2]/(n+1)];
Array[a, 25] (* Jean-François Alcover, Aug 30 2019 *)
PROG
(PARI) a(n)={if(n==0, 1, sumdiv(n, d, if(d<n, 1, 1/(n+1)) * eulerphi(n/d) * (2-n/d%2) * 2^(d-1) * binomial(2*d, d))/(2*n) + if(n%2, 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1)))} \\ Andrew Howroyd, Mar 29 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Mar 17 2005
EXTENSIONS
More terms from Jean-François Alcover, Aug 30 2019
a(0)=1 prepended by Andrew Howroyd, Mar 29 2021
STATUS
approved