login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069727
Number of nonisomorphic unrooted Eulerian planar maps with n edges (Eulerian means that all vertices are of even valency; there is an Eulerian cycle).
8
1, 1, 2, 4, 12, 34, 154, 675, 3534, 18985, 108070, 632109, 3807254, 23411290, 146734695, 934382820, 6034524474, 39457153432, 260855420489, 1741645762265, 11732357675908, 79673115468562, 545036528857605, 3753642607424647, 26010818244754788, 181266500331748878
OFFSET
0,3
COMMENTS
By duality, also the number of unrooted (sensed) bipartite maps with n edges. - Andrew Howroyd, Mar 29 2021
LINKS
FORMULA
a(n) = (1/(2n))*(3*2^(n-1)*binomial(2n, n)/((n+1)(n+2)) + Sum_{k=1..n-1, k|n} phi(n/k)*d(n/k)*2^(k-2)*binomial(2k, k)) + q(n) where phi is the Euler function A000010, q(n) = 2^((n-4)/2)*binomial(n, n/2)/(n+2) if n is even, q(n) = 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1) if n is odd, d(n)=4, if n is even and d(n)=3 if n is odd. - Valery A. Liskovets, Mar 17 2005
a(n) ~ 3 * 2^(3*n-2) / (sqrt(Pi) * n^(7/2)). - Vaclav Kotesovec, Aug 28 2019
MATHEMATICA
a[n_] := (1/(2n)) * (3*2^(n-1) * Binomial[2n, n]/((n+1)*(n+2)) + Sum[ EulerPhi[n/k] * d[n/k] * 2^(k-2) * Binomial[2k, k], {k, Most[ Divisors[n]]}]) + q[n]; a[0] = 1; q[n_?EvenQ] := 2^((n-4)/2)*Binomial[ n, n/2]/(n+2); q[n_?OddQ] := 2^((n-1)/2)*Binomial[(n-1), (n-1)/2]/(n+1); d[n_] := 4-Mod[n, 2]; Table[ a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 19 2011, after Valery A. Liskovets *)
PROG
(PARI) a(n) = {if(n==0, 1, sumdiv(n, d, if(d<n, 1, 2/((n+1)*(n+2))) * eulerphi(n/d) * (4-n/d%2) * 2^(d-2) * binomial(2*d, d))/(2*n) + if(n%2, 2^((n-1)/2)/(n+1), 2^((n-4)/2)/(n+2))*binomial(n\2*2, n\2))} \\ Andrew Howroyd, Mar 29 2021
CROSSREFS
Cf. A000257 (rooted), A069720, A069724, A103939 (with distinguished face), A103940 (with distinguished vertex).
Sequence in context: A363202 A215953 A209027 * A148204 A151525 A148205
KEYWORD
easy,nice,nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
STATUS
approved