login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A148204
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (-1, 0, 1), (0, 0, 1), (0, 1, -1), (1, -1, 1)}.
1
1, 1, 2, 4, 12, 35, 113, 375, 1310, 4703, 17330, 65209, 250114, 973787, 3843412, 15348830, 61943321, 252282099, 1036030465, 4286325796, 17852945250, 74812425886, 315247690475, 1335177040541, 5681387342453, 24279598309480, 104174406713499, 448629070128615, 1938691951621376, 8404757306420331
OFFSET
0,3
LINKS
Alin Bostan and Manuel Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2009.
MAPLE
Steps:= [[-1, 0, 0], [-1, 0, 1], [0, 0, 1], [0, 1, -1], [1, -1, 1]]:
f:= proc(n, p) option remember;
if n <= min(p) then return 5^n fi;
add(procname(n-1, t), t=remove(has, map(`+`, Steps, p), -1)); end proc:
map(f, [$0..40], [0, 0, 0]); # Robert Israel, Dec 13 2018
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, 1 + j, -1 + k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A215953 A209027 A069727 * A151525 A148205 A019447
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved