login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069729
Number of rooted non-separable bi-Eulerian planar maps with 2n edges. Bi-Eulerian means all its vertices and faces are of even valency.
4
1, 1, 2, 8, 54, 442, 4032, 39706, 413358, 4487693, 50348500, 579994802, 6827955072, 81854670861, 996529292432, 12293898494952, 153421680489694, 1934041122204318, 24599034335501730, 315369011873625930, 4072021557616191708, 52915860528084306704, 691646518495876375968
OFFSET
0,3
COMMENTS
The formula from the article by Liskovets and Walsh, p. 218, B'ns(n), gives incorrect data {1, 4, 25, 204, 1964, 21070, 243681, ...}. Here is the incorrect formula rewritten into Mathematica: Table[(Sum[(-1)^j*3^(n - j - 1)*Binomial[2*n + j - 1, j] * Sum[(-1)^k*Binomial[j, k]*Binomial[3*n, n - j - k - 1], {k, 0, Min[j, n - j - 1]}], {j, 0, n - 1}] - 2*Sum[(-1)^j*3^(n - j - 1)*Binomial[2*n + j - 1, j] * Sum[(-1)^k*Binomial[j, k]*Binomial[3*n, n - j - k - 2], {k, 0, Min[j, n - j - 2]}], {j, 0, n - 2}])/n, {n, 1, 20}]. - Vaclav Kotesovec, Apr 13 2018
LINKS
V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
FORMULA
G.f. y=A(x) satisfies 0 = y^9 - y^8 + 18*x*y^6 - 66*x*y^5 + 47*x*y^4 + 81*x^2*y^3 - 81*x^2*y^2 + 27*x^2*y - 3*x^2. - Gheorghe Coserea, Apr 13 2018
a(n) ~ 2^(6*n - 1) * 3^(8*n - 1/2) / (3125 * sqrt(Pi) * 13^(4*n - 5/2) * n^(5/2)). - Vaclav Kotesovec, Apr 13 2018
A(x) = 1 + serreverse(-(1+x)^4*(18*x^2-30*x-1 + (1-12*x)^(3/2))/(6*(3*x+2)^3)); equivalently, it can be rewritten as A(x) = 1 + serreverse((y - 1)*(3*y^2 + y - 1)^4 / (243 * y^6 * (2*y-1)^3)), where y = A000108(3*x). - Gheorghe Coserea, Apr 14 2018
EXAMPLE
A(x) = 1 + x + 2*x^2 + 8*x^3 + 54*x^4 + 442*x^5 + 4032*x^6 + ...
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[-(1+x)^4*(18*x^2-30*x-1 + (1-12*x)^(3/2))/(6*(3*x+2)^3), {x, 0, 25}], x], x] (* Vaclav Kotesovec, Apr 14 2018, after Gheorghe Coserea *)
PROG
(PARI)
seq(N) = {
my(x='x+O('x^(2*N-1)), y=1+serreverse(x/(3*(1+x)^3)), f=(1+3*y-y^2)/3,
g=subst(f, 'x, 'x^2), v=Vec(subst(g, 'x, serreverse(x*g^2))));
vector((#v+1)\2, n, v[2*n-1]);
};
seq(23) \\ Gheorghe Coserea, Apr 13 2018
CROSSREFS
Sequence in context: A296788 A079503 A052694 * A346647 A354690 A052599
KEYWORD
nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
EXTENSIONS
More terms from Gheorghe Coserea, Apr 13 2018
STATUS
approved