login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069731
Number of unicursal planar maps with n edges rooted at a vertex of odd valency (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
2
1, 5, 28, 168, 1056, 6864, 45760, 311168, 2149888, 15049216, 106502144, 760729600, 5477253120, 39710085120, 289650032640, 2124100239360, 15651264921600, 115819360419840, 860372391690240
OFFSET
1,2
LINKS
V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
FORMULA
a(n) = 2^(n-2)*C_(n+1), where C_n stands for the Catalan numbers (A000108).
a(n) = A003645(n+2)/4.
D-finite with recurrence: 4*(2*n+1)*a(n-1) - (n+2)*a(n) = 0, a(1) = 1. - Georg Fischer, May 23 2021
From Peter Bala, Apr 29 2024: (Start)
a(n) = Sum_{k = 0..n} binomial(n, 2*k)*Catalan(k)*4^(n-k-1).
O.g.f.: A(x) = (1 - 4*x - 8*x^2 - sqrt(1 - 8*x))/(32*x^2).
A(x) = series reversion of x*c(-x)/(1 + 4*x), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108 and c(-x)/(1 + 4*x) is the g.f. of (-1)^n*A000346(n). (End)
MAPLE
Z:=-(1-4*z-sqrt(1-4*z))/sqrt(1-4*z)/64: Zser:=series(Z, z=0, 32): seq(coeff(Zser*2^(n+1), z, n), n=3..24); # Zerinvary Lajos, Jan 01 2007
MATHEMATICA
Table[2^(n-2) CatalanNumber[n+1], {n, 1, 19}] (* Jean-François Alcover, Aug 28 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
STATUS
approved