login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069734
Number of pairs (p,q), 0<=p<=q, such that p+q divides n.
13
1, 3, 3, 6, 4, 9, 5, 11, 8, 12, 7, 19, 8, 15, 14, 20, 10, 24, 11, 26, 18, 21, 13, 37, 17, 24, 22, 33, 16, 42, 17, 37, 26, 30, 26, 53, 20, 33, 30, 52, 22, 54, 23, 47, 42, 39, 25, 71, 30, 51, 38, 54, 28, 66, 38, 67, 42, 48, 31, 94, 32, 51, 55, 70, 44, 78, 35, 68, 50, 78, 37, 108
OFFSET
1,2
COMMENTS
Also number of orientable coverings of the Klein bottle with 2n lists (orientable m-list coverings exist only for even m).
Equals row sums of triangle A178650. - Gary W. Adamson, May 31 2010
Also number of inequivalent sublattices of index n of the rectangular lattice, that has the p2mm (pmm) symmetry group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A145394 (p6), A003051 (p6mm). - Andrey Zabolotskiy, Mar 12 2018
FORMULA
a(n) = A046524(2n) - A069733(2n).
Inverse Moebius transform of: 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, ... G.f.: Sum_{n>0} x^n*(1+x^n-x^(2*n))/(1-x^(2*n))/(1-x^n). - Vladeta Jovovic, Feb 03 2003
a(n) = (A000203(n) + A069735(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A304182(n/m^2) + A304183(n/m^2) = A069735(n) + Sum_{ m: m^2|n } A304183(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A008619(d) = Sum_{ d|n } (1 + floor(d/2)). - Andrey Zabolotskiy, Jul 20 2019
a(n) = (A007503(n) + A183063(n))/2. - Peter Luschny, Jul 20 2019
EXAMPLE
There are 9 pairs (p,q), 0<=p<=q, such that p+q divides 6: (0,1), (0,2), (0,3), (0,6), (1,1), (1, 2), (1, 5), (2, 4), (3, 3); thus a(6) = 9.
x + 3*x^2 + 3*x^3 + 6*x^4 + 4*x^5 + 9*x^6 + 5*x^7 + 11*x^8 + 8*x^9 + ...
MAPLE
with(numtheory): a := n -> (sigma(n) + tau(n) + `if`(irem(n, 2) = 1, 0, tau(n/2)))/2: seq(a(n), n=1..72); # Peter Luschny, Jul 20 2019
MATHEMATICA
a[n_] := (DivisorSigma[1, n] + DivisorSigma[0, n] + If[OddQ[n], 0, DivisorSigma[0, n/2]])/2;
Array[a, 72] (* Jean-François Alcover, Aug 27 2019, from Maple *)
PROG
(PARI) {a(n) = if( n<1, 0, sum( k=1, n, sum( j=0, k, n%(j+k) == 0)))} /* Michael Somos, Mar 24 2012 */
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
EXTENSIONS
New description from Vladeta Jovovic, Feb 03 2003
STATUS
approved