

A070952


Number of 1's in nth generation of 1D CA using Rule 30, started with a single 1.


24



1, 3, 3, 6, 4, 9, 5, 12, 7, 12, 11, 14, 12, 19, 13, 22, 15, 19, 20, 24, 21, 23, 23, 28, 26, 27, 26, 33, 30, 34, 31, 39, 26, 39, 29, 46, 32, 44, 38, 45, 47, 41, 45, 49, 38, 55, 42, 51, 44, 53, 43, 59, 52, 60, 49, 65, 57, 60, 56, 69, 61, 70, 59, 78, 64, 56, 65, 69, 69
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Number of 1's in nth row of triangle in A070950.
Row sums in A070950; a(n) = 2*n + 1  A070951(n).  Reinhard Zumkeller, Jun 07 2013


LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..10000
N. J. A. Sloane, Illustration of first 20 generations
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
Eric Weisstein's World of Mathematics, Rule 30
Wikipedia, Rule 30
Index entries for sequences related to cellular automata


EXAMPLE

May be arranged into blocks of length 1,1,2,4,8,16,...:
1,
3,
3, 6,
4, 9, 5, 12,
7, 12, 11, 14, 12, 19, 13, 22,
15, 19, 20, 24, 21, 23, 23, 28, 26, 27, 26, 33, 30, 34, 31, 39,
26, 39, 29, 46, 32, 44, 38, 45, 47, 41, 45, 49, 38, 55, 42, 51,
44, 53, 43, 59, 52, 60, 49, 65, 57, 60, 56, 69, 61, 70, 59, 78,
64, 56, 65, 69, 69, ...


MATHEMATICA

Map[Function[Apply[Plus, Flatten[ #1]]], CellularAutomaton[30, {{1}, 0}, 100]] (N. J. A. Sloane, Aug 10 2009)


PROG

(Haskell)
a070952 = sum . a070950_row  Reinhard Zumkeller, Jun 07 2013


CROSSREFS

This sequence, A110240, and A245549 all describe the same sequence of successive states. See also A269160.
Cf. A071049, A070950, A070951, A151929, A051023.
Cf. A110267 (partial sums), A246023, A246024, A246025, A246026, A246597.
A265703 is an essentially identical sequence.
Sequence in context: A284614 A069734 A265703 * A137462 A163926 A050346
Adjacent sequences: A070949 A070950 A070951 * A070953 A070954 A070955


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane, May 19 2002, Aug 10 2009


EXTENSIONS

More terms from Hans Havermann, May 26 2002
Corrected offset and initial term  N. J. A. Sloane, Jun 07 2013


STATUS

approved



