login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069736
Total number of Eulerian circuits in labeled multigraphs with n edges.
1
1, 2, 13, 150, 2541, 57330, 1623105, 55405350, 2216439225, 101738006370, 5271938032725, 304455567165750, 19391501988260325, 1350480167457671250, 102096314890336391625, 8327231070135771543750, 728877648485930118800625
OFFSET
0,2
LINKS
B. Lass, Démonstration combinatoire de la formule de Harer-Zagier, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, 333 (2001) No 3, 155-160.
B. Lass, Démonstration combinatoire de la formule de Harer-Zagier, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, 333 (2001) No 3, 155-160.
Valery Liskovets, A Note on the Total Number of Double Eulerian Circuits in Multigraphs , Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.5
FORMULA
a(n) = (2*n)!/(2^n*n!)(3^(n+1)-1)/(2*(n+1)).
E.g.f.: (sqrt(1-2*x)-sqrt(1-6*x))/(2*x).
From Sergei N. Gladkovskii, Jul 25 2012: (Start)
G.f.: 1 + 8*x/(G(0)-8*x); where G(k) = x*(k+1)*(2*k+1)*(9*3^k-1) + (k+2)*(3*3^k-1) - x*((k+2)^2)*(3*3^k-1)*(2*k+3)*(27*3^k-1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step).
G.f.: (3/2)*G(0) where G(k) = 1 - 1/(3*3^k - 27*x*(k+1)*(2*k+1)*9^k/(9*x*(2*k+1)*(k+1)*3^k - (k+2)/Q2)); (continued fraction, 3rd kind, 3-step).
E.g.f.: (sqrt(1-2*x) - sqrt(1-6*x))/(2*x) = G(0)/(2*x); where G(k) = 1 - 3^k/(1 - x*(2*k-1)/(x*(2*k-1) - 3^k*(k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step).
(End)
MATHEMATICA
Table[(2n)!/(2^n n!)(3^(n+1)-1)/(2(n+1)), {n, 0, 20}] (* Harvey P. Dale, Aug 24 2019 *)
PROG
(PARI) x=xx+O(xx^33); Vec(serlaplace((sqrt(1-2*x)-sqrt(1-6*x))/(2*x))) \\ Michel Marcus, Dec 11 2014
CROSSREFS
Cf. A011781.
Sequence in context: A373179 A364339 A204554 * A363846 A058192 A367820
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
STATUS
approved