OFFSET
0,2
LINKS
B. Lass, Démonstration combinatoire de la formule de Harer-Zagier, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, 333 (2001) No 3, 155-160.
B. Lass, Démonstration combinatoire de la formule de Harer-Zagier, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, 333 (2001) No 3, 155-160.
Valery Liskovets, A Note on the Total Number of Double Eulerian Circuits in Multigraphs , Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.5
FORMULA
a(n) = (2*n)!/(2^n*n!)(3^(n+1)-1)/(2*(n+1)).
E.g.f.: (sqrt(1-2*x)-sqrt(1-6*x))/(2*x).
From Sergei N. Gladkovskii, Jul 25 2012: (Start)
G.f.: 1 + 8*x/(G(0)-8*x); where G(k) = x*(k+1)*(2*k+1)*(9*3^k-1) + (k+2)*(3*3^k-1) - x*((k+2)^2)*(3*3^k-1)*(2*k+3)*(27*3^k-1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step).
G.f.: (3/2)*G(0) where G(k) = 1 - 1/(3*3^k - 27*x*(k+1)*(2*k+1)*9^k/(9*x*(2*k+1)*(k+1)*3^k - (k+2)/Q2)); (continued fraction, 3rd kind, 3-step).
E.g.f.: (sqrt(1-2*x) - sqrt(1-6*x))/(2*x) = G(0)/(2*x); where G(k) = 1 - 3^k/(1 - x*(2*k-1)/(x*(2*k-1) - 3^k*(k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step).
(End)
MATHEMATICA
Table[(2n)!/(2^n n!)(3^(n+1)-1)/(2(n+1)), {n, 0, 20}] (* Harvey P. Dale, Aug 24 2019 *)
PROG
(PARI) x=xx+O(xx^33); Vec(serlaplace((sqrt(1-2*x)-sqrt(1-6*x))/(2*x))) \\ Michel Marcus, Dec 11 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
STATUS
approved