OFFSET
1,2
COMMENTS
From Andrey Zabolotskiy, Mar 12 2018: (Start)
If reflections are not allowed, we get A145392. If any rotations and reflections are allowed, we get A054346.
The parent lattice of the sublattices under consideration has Patterson symmetry group p4mm, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145394 (p6), A003051 (p6mm).
LINKS
Andrey Zabolotskiy, Table of n, a(n) for n = 1..10000
Amihay Hanany, Domenico Orlando, and Susanne Reffert, Sublattice counting and orbifolds, High Energ. Phys., 2010 (2010), 51, arXiv.org:1002.2981 [hep-th] (see table 6 and fig. 2).
John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 2; beware the typo in a(5).]
Andrey Zabolotskiy, Sublattices of the square lattice (illustrations for n = 1..6, 15, 25)
FORMULA
a(n) = (A000203(n) + A002654(n) + A069735(n) + A145390(n))/4. [Rutherford] - N. J. A. Sloane, Mar 13 2009
G.f.: Sum_{ m>=1 } (1/((1-x^m)(1-x^(4m))) - 1). [Hanany, Orlando & Reffert, eq. (6.8)] - Andrey Zabolotskiy, Jul 05 2017
a(n) = Sum_{ m: m^2|n } A019590(n/m^2) + A157228(n/m^2) + A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2) = A053866(n) + A025441(n) + Sum_{ m: m^2|n } A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2). [Rutherford] - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A008621(d) = Sum_{ d|n } (1 + floor(d/4)). [From the above-given g.f.] - Andrey Zabolotskiy, Jul 17 2019
MATHEMATICA
terms = 70;
CoefficientList[Sum[(1/((1-x^m)(1-x^(4m)))-1), {m, 1, terms}] + O[x]^(terms + 1), x] // Rest (* Jean-François Alcover, Aug 05 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 23 2009
EXTENSIONS
New name from Andrey Zabolotskiy, Mar 12 2018
STATUS
approved