login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145393 Number of inequivalent sublattices of index n in square lattice, where two sublattices are considered equivalent if one can be rotated or reflected to give the other, with that rotation or reflection preserving the parent square lattice. 20
1, 2, 2, 4, 3, 5, 3, 7, 5, 7, 4, 11, 5, 8, 8, 12, 6, 13, 6, 15, 10, 11, 7, 21, 10, 13, 12, 18, 9, 22, 9, 21, 14, 16, 14, 29, 11, 17, 16, 29, 12, 28, 12, 25, 23, 20, 13, 39, 16, 27, 20, 29, 15, 34, 20, 36, 22, 25, 16, 50, 17, 26, 29, 38, 24, 40, 18, 36, 26, 40 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
From Andrey Zabolotskiy, Mar 12 2018: (Start)
If reflections are not allowed, we get A145392. If any rotations and reflections are allowed, we get A054346.
The parent lattice of the sublattices under consideration has Patterson symmetry group p4mm, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145394 (p6), A003051 (p6mm).
Rutherford says at p. 161 that a(n) != A054346(n) only when A002654(n) > 2, but actually these two sequence differ at other terms, too, for example, at n = 30 (see illustration). (End)
LINKS
Amihay Hanany, Domenico Orlando, and Susanne Reffert, Sublattice counting and orbifolds, High Energ. Phys., 2010 (2010), 51, arXiv.org:1002.2981 [hep-th] (see table 6 and fig. 2).
John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 2; beware the typo in a(5).]
Andrey Zabolotskiy, Sublattices of the square lattice (illustrations for n = 1..6, 15, 25)
FORMULA
a(n) = (A000203(n) + A002654(n) + A069735(n) + A145390(n))/4. [Rutherford] - N. J. A. Sloane, Mar 13 2009
G.f.: Sum_{ m>=1 } (1/((1-x^m)(1-x^(4m))) - 1). [Hanany, Orlando & Reffert, eq. (6.8)] - Andrey Zabolotskiy, Jul 05 2017
a(n) = Sum_{ m: m^2|n } A019590(n/m^2) + A157228(n/m^2) + A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2) = A053866(n) + A025441(n) + Sum_{ m: m^2|n } A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2). [Rutherford] - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A008621(d) = Sum_{ d|n } (1 + floor(d/4)). [From the above-given g.f.] - Andrey Zabolotskiy, Jul 17 2019
MATHEMATICA
terms = 70;
CoefficientList[Sum[(1/((1-x^m)(1-x^(4m)))-1), {m, 1, terms}] + O[x]^(terms + 1), x] // Rest (* Jean-François Alcover, Aug 05 2018 *)
CROSSREFS
Sequence in context: A086671 A269502 A054346 * A215675 A329439 A132802
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 23 2009
EXTENSIONS
New name from Andrey Zabolotskiy, Mar 12 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 00:30 EDT 2024. Contains 371917 sequences. (Running on oeis4.)