OFFSET
1,4
COMMENTS
Andrey Zabolotskiy's new formula confirms that a(n) indeed is a function of A305891(n). - Antti Karttunen, Oct 01 2018
LINKS
Andrey Zabolotskiy, Table of n, a(n) for n = 1..5000
John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 5.]
FORMULA
From Andrey Zabolotskiy, Sep 30 2018: (Start)
Let b(n) = A007875(n) for n>1, b(1) = 0. Then
a(n) = b(n) for odd n,
a(n) = b(n) + b(n/2) for even n.
Thus the sorted list of all terms (except for a(1)=0) is A029744. (End)
PROG
(PARI)
A007875(n) = eulerphi(2^omega(n));
A157226(n) = if(n<=2, n-1, (A007875(n) + if(!(n%2), A007875(n/2)))); \\ Antti Karttunen, Oct 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 25 2009
EXTENSIONS
New name and more terms from Andrey Zabolotskiy, May 09 2018
STATUS
approved