login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029744 Numbers of the form 2^n or 3*2^n. 67
1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

WARNING: Several comments, formulas and programs seem to refer to the original version with offset=0. - M. F. Hasler, Oct 06 2014

Number of necklaces with n-1 beads and two colors that are the same when turned over and hence have reflection symmetry. [edited by Herbert Kociemba, Nov 24 2016]

The subset {a(1),...,a(2k)} contains all proper divisors of 3*2^k. - Ralf Stephan, Jun 02 2003

Let k = any nonnegative integer and j = 0 or 1. Then n+1 = 2k + 3j and a(n) = 2^k*3^j. - Andras Erszegi (erszegi.andras(AT)chello.hu), Jul 30 2005

Smallest number having not less prime factors than any predecessor, a(0)=1; A110654(n)=A001222(a(n)); complement of A116451. - Reinhard Zumkeller, Feb 16 2006

A093873(a(n)) = 1. - Reinhard Zumkeller, Oct 13 2006

a(n)=a(n-1)+a(n-2)-GCD(a(n-1),a(n-2)),n>=3, a(1)=2,a(2)=3, GCD greatest common divisor. - Ctibor O. Zizka, Jun 06 2009

Where records occur in A048985: A193652(n) = A048985(a(n)) and A193652(n) < A048985(m) for m < a(n). - Reinhard Zumkeller, Aug 08 2011

A002348(a(n)) = A000079(n-3) for n > 2. - Reinhard Zumkeller, Mar 18 2012

Without initial 1, third row in array A228405. - Richard R. Forberg, Sep 06 2013

Numbers x such that sum_{i=1..k} (1/(p_i-1)) + product_{i=1..k} (1/(p_i-1)) is an integer, where p_i are the k prime factors of x (with multiplicity). In particular this sum is equal to n+1, being n the exponent of 2. [Paolo P. Lava, Feb 24 2014]

Also positions of records in A048673. A246360 gives the record values. - Antti Karttunen, Sep 23 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..2000

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

John P. McSorley and Alan H. Schoen, Rhombic Tilings of (n,k)-Ovals, (n, k, lambda)-Cyclic Difference Sets, and Related Topics, Discrete Math., 313 (2013), 129-154. - From N. J. A. Sloane, Nov 26 2012

Index entries for linear recurrences with constant coefficients, signature (0,2).

Index entries for sequences related to necklaces

FORMULA

a(n) = 2*A000029(n)-A000031(n).

For n>2 a(n)=2a(n-2); for n>3 a(n)=a(n-1)*a(n-2)/a(n-3). G.f.: (1+x)^2/(1-2*x^2). - Henry Bottomley, Jul 15 2001, corrected May 04 2007

a(0)=1, a(1)=1 and a(n) = a(n-2) * ( floor(a(n-1)/a(n-2)) + 1 ). - Benoit Cloitre, Aug 13 2002

(3/4+sqrt(1/2))*sqrt(2)^n + (3/4-sqrt(1/2))*(-sqrt(2))^n. a(0)=1, a(2n) = a(n-1)*a(n), a(2n+1) = a(n) + 2^floor((n-1)/2). - Ralf Stephan, Apr 16 2003 [Seems to refer to the original version with offset=0. - M. F. Hasler, Oct 06 2014]

Binomial transform is A048739. - Paul Barry, Apr 23 2004

E.g.f.: (cosh(x/sqrt(2))+sqrt(2)sinh(x/sqrt(2)))^2.

a(1) = 1; a(n+1) = a(n) + A000010(a(n)). - Stefan Steinerberger, Dec 20 2007

u(2)=1, v(2)=1, u(n)=2*v(n-1), v(n)=u(n-1), a(n)=u(n)+v(n). - Jaume Oliver Lafont, May 21 2008

For n=>3, a(n) = sqrt(2*a(n-1)^2 + (-2)^(n-3)). - Richard R. Forberg, Aug 20 2013

a(n) = A064216(A246360(n)). - Antti Karttunen, Sep 23 2014

a(n) = sqrt((17-(-1)^n)*2^(n-4)) for n>=2. - Anton Zakharov, Jul 24 2016

MAPLE

with(numtheory); P:=proc(q) local a, b, c, i, n;

for n from 1 to q do a:=ifactors(n)[2]; b:=add(a[i, 2]/(a[i, 1]-1), i=1..nops(a));

c:=mul((1/(a[i, 1]-1))^a[i, 2], i=1..nops(a)); if type(b+c, integer) then print(n);

fi; od; end: P(10^6); # Paolo P. Lava, Feb 24 2014

# Alternative:

1, seq(op([2^i, 3*2^(i-1)]), i=1..100); # Robert Israel, Sep 23 2014

MATHEMATICA

CoefficientList[Series[(-x^2 - 2*x - 1)/(2*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)

Function[w, DeleteCases[Union@ Flatten@ w, k_ /; k > Max@ First@ w]]@ TensorProduct[{1, 3}, 2^Range[0, 22]] (* Michael De Vlieger, Nov 24 2016 *)

LinearRecurrence[{0, 2}, {1, 2, 3}, 50] (* Harvey P. Dale, Jul 04 2017 *)

PROG

(PARI) a(n)=2^(n\2)*if(n%2, 2, 3/2) \\ Refers to the original version with offset=0. - M. F. Hasler, Oct 06 2014

(Haskell)

a029744 n = a029744_list !! (n-1)

a029744_list = 1 : iterate

   (\x -> if x `mod` 3 == 0 then 4 * x `div` 3 else 3 * x `div` 2) 2

-- Reinhard Zumkeller, Mar 18 2012

(Scheme) (define (A029744 n) (cond ((<= n 1) n) ((even? n) (expt 2 (/ n 2))) (else (* 3 (expt 2 (/ (- n 3) 2)))))) ;; Antti Karttunen, Sep 23 2014

CROSSREFS

Cf. A056493, A038754, A063759. Union of A000079 and A007283.

First differences are in A016116(n-1).

Cf. A082125, A094958, A048739, A048985, A193652, A048673, A064216, A246360.

Row sums of the triangle in sequence A119963. - John P. McSorley, Aug 31 2010

Sequence in context: A064428 A052810 A164090 * A018635 A018425 A018328

Adjacent sequences:  A029741 A029742 A029743 * A029745 A029746 A029747

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Corrected and extended by Joe Keane (jgk(AT)jgk.org), Feb 20 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 16 07:41 EST 2017. Contains 296076 sequences.