login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061776
Start with a single triangle; at n-th generation add a triangle at each vertex, allowing triangles to overlap; sequence gives number of triangles in n-th generation.
4
1, 3, 6, 12, 18, 30, 42, 66, 90, 138, 186, 282, 378, 570, 762, 1146, 1530, 2298, 3066, 4602, 6138, 9210, 12282, 18426, 24570, 36858, 49146, 73722, 98298, 147450, 196602, 294906, 393210, 589818, 786426, 1179642, 1572858, 2359290, 3145722, 4718586, 6291450
OFFSET
0,2
COMMENTS
Number of 3-colorings of the (n,2)-Turán graph. - Alois P. Heinz, Jun 07 2024
REFERENCES
R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.
LINKS
R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Scanned photocopy of pages 5, 6 only, with annotations by R. K. Guy and N. J. A. Sloane]
FORMULA
Explicit formula given in Maple line.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3) for n>3. G.f.: (1+2*x)*(1+x^2)/((1-x)*(1-2*x^2)). - Colin Barker, May 08 2012
a(n) = 3*A027383(n-1) for n>0, a(0)=1. - Bruno Berselli, May 08 2012
MAPLE
A061776 := proc(n) if n mod 2 = 0 then 6*(2^(n/2)-1); else 3*(2^((n-1)/2)-1)+3*(2^((n+1)/2)-1); fi; end; # for n >= 1
MATHEMATICA
a[0]=1; a[n_/; EvenQ[n]]:=6*(2^(n/2)-1); a[n_/; OddQ[n]] := 3*(2^((n-1)/2)-1) + 3*(2^((n+1)/2)-1); a /@ Range[0, 37] (* Jean-François Alcover, Apr 22 2011, after Maple program *)
CoefficientList[Series[(1 + 2 x) (1 + x^2) / ((1 - x) (1 - 2 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
LinearRecurrence[{1, 2, -2}, {1, 3, 6, 12}, 40] (* Harvey P. Dale, Mar 27 2019 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -2, 2, 1]^n*[1; 3; 6])[1, 1] \\ Charles R Greathouse IV, Feb 19 2017
CROSSREFS
A061777 gives total population of triangles at n-th generation.
Cf. A266972.
Sequence in context: A242477 A006156 A171370 * A356020 A341316 A298029
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved