OFFSET
0,2
COMMENTS
Number of 3-colorings of the (n,2)-Turán graph. - Alois P. Heinz, Jun 07 2024
REFERENCES
R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Scanned photocopy of pages 5, 6 only, with annotations by R. K. Guy and N. J. A. Sloane]
Index entries for linear recurrences with constant coefficients, signature (1,2,-2).
FORMULA
Explicit formula given in Maple line.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3) for n>3. G.f.: (1+2*x)*(1+x^2)/((1-x)*(1-2*x^2)). - Colin Barker, May 08 2012
a(n) = 3*A027383(n-1) for n>0, a(0)=1. - Bruno Berselli, May 08 2012
MAPLE
A061776 := proc(n) if n mod 2 = 0 then 6*(2^(n/2)-1); else 3*(2^((n-1)/2)-1)+3*(2^((n+1)/2)-1); fi; end; # for n >= 1
MATHEMATICA
a[0]=1; a[n_/; EvenQ[n]]:=6*(2^(n/2)-1); a[n_/; OddQ[n]] := 3*(2^((n-1)/2)-1) + 3*(2^((n+1)/2)-1); a /@ Range[0, 37] (* Jean-François Alcover, Apr 22 2011, after Maple program *)
CoefficientList[Series[(1 + 2 x) (1 + x^2) / ((1 - x) (1 - 2 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
LinearRecurrence[{1, 2, -2}, {1, 3, 6, 12}, 40] (* Harvey P. Dale, Mar 27 2019 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -2, 2, 1]^n*[1; 3; 6])[1, 1] \\ Charles R Greathouse IV, Feb 19 2017
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, R. K. Guy, Jun 23 2001
STATUS
approved