|
|
A266972
|
|
Triangle T(n,k), n>=0, 0<=k<=n, read by rows: row n gives the coefficients of the chromatic polynomial of the (n,2)-Turán graph, highest powers first.
|
|
3
|
|
|
1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -4, 6, -3, 0, 1, -6, 15, -17, 7, 0, 1, -9, 36, -75, 78, -31, 0, 1, -12, 66, -202, 351, -319, 115, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -20, 190, -1080, 3925, -9164, 13186, -10489, 3451, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
COMMENTS
|
The (n,2)-Turán graph is also the complete bipartite graph K_{floor(n/2),ceiling(n/2)}.
|
|
LINKS
|
Alois P. Heinz, Rows n = 0..140, flattened
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Wikipedia, Chromatic Polynomial
Wikipedia, Turán graph
|
|
FORMULA
|
T(n,k) = [q^(n-k)] Sum_{j=1..floor(n/2)} (q-j)^(n-floor(n/2)) * Stirling2(floor(n/2),j) * Product_{i=0..j-1} (q-i).
Sum_{k=0..n} abs(T(n,k)) = A266695(n).
|
|
EXAMPLE
|
Triangle T(n,k) begins:
1;
1, 0;
1, -1, 0;
1, -2, 1, 0;
1, -4, 6, -3, 0;
1, -6, 15, -17, 7, 0;
1, -9, 36, -75, 78, -31, 0;
1, -12, 66, -202, 351, -319, 115, 0;
1, -16, 120, -524, 1400, -2236, 1930, -675, 0;
|
|
MAPLE
|
P:= n-> (h-> expand(add(Stirling2(h, j)*mul(q-i,
i=0..j-1)*(q-j)^(n-h), j=0..h)))(iquo(n, 2)):
T:= n-> (p-> seq(coeff(p, q, n-i), i=0..n))(P(n)):
seq(T(n), n=0..12);
|
|
CROSSREFS
|
Columns k=0-1 give: A000012, (-1)*A002620.
Main diagonal gives A000007.
Cf. A212084, A266695.
Sequence in context: A323174 A295683 A165519 * A339650 A266493 A075374
Adjacent sequences: A266969 A266970 A266971 * A266973 A266974 A266975
|
|
KEYWORD
|
sign,tabl
|
|
AUTHOR
|
Alois P. Heinz, Jan 07 2016
|
|
STATUS
|
approved
|
|
|
|