login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266972
Triangle T(n,k), n>=0, 0<=k<=n, read by rows: row n gives the coefficients of the chromatic polynomial of the (n,2)-Turán graph, highest powers first.
4
1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -4, 6, -3, 0, 1, -6, 15, -17, 7, 0, 1, -9, 36, -75, 78, -31, 0, 1, -12, 66, -202, 351, -319, 115, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -20, 190, -1080, 3925, -9164, 13186, -10489, 3451, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0
OFFSET
0,8
COMMENTS
The (n,2)-Turán graph is also the complete bipartite graph K_{floor(n/2),ceiling(n/2)}.
LINKS
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Wikipedia, Turán graph
FORMULA
T(n,k) = [q^(n-k)] Sum_{j=0..floor(n/2)} (q-j)^(n-floor(n/2)) * Stirling2(floor(n/2),j) * Product_{i=0..j-1} (q-i).
Sum_{k=0..n} abs(T(n,k)) = A266695(n).
EXAMPLE
Triangle T(n,k) begins:
1;
1, 0;
1, -1, 0;
1, -2, 1, 0;
1, -4, 6, -3, 0;
1, -6, 15, -17, 7, 0;
1, -9, 36, -75, 78, -31, 0;
1, -12, 66, -202, 351, -319, 115, 0;
1, -16, 120, -524, 1400, -2236, 1930, -675, 0;
...
MAPLE
P:= n-> (h-> expand(add(Stirling2(h, j)*mul(q-i,
i=0..j-1)*(q-j)^(n-h), j=0..h)))(iquo(n, 2)):
T:= n-> (p-> seq(coeff(p, q, n-i), i=0..n))(P(n)):
seq(T(n), n=0..12);
CROSSREFS
Columns k=0-1 give: A000012, (-1)*A002620.
Main diagonal gives A000007.
Sequence in context: A323174 A295683 A165519 * A339650 A266493 A075374
KEYWORD
sign,tabl
AUTHOR
Alois P. Heinz, Jan 07 2016
STATUS
approved