OFFSET
0,3
COMMENTS
For n > 36 is a(n) > 0 if n is even and a(n) < 0 if n is odd.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = -n. - Seiichi Manyama, Nov 18 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..6224 (terms 0..1000 from Vaclav Kotesovec)
FORMULA
a(n) ~ c * (-1)^n * n^2 * 3^(n/3), where
c = 50.5838262902886367070621... if mod(n,3)=0,
c = 50.5827771239052189170531... if mod(n,3)=1,
c = 50.5832885870455104598393... if mod(n,3)=2.
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(-d)^(n/d). - Seiichi Manyama, Nov 18 2017
MATHEMATICA
nmax=50; CoefficientList[Series[Product[1/(1+k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+k*x^k)^k)) \\ Seiichi Manyama, Nov 18 2017
(Ruby)
def s(f_ary, g_ary, n)
s = 0
(1..n).each{|i| s += i * f_ary[i] * g_ary[i] ** (n / i) if n % i == 0}
s
end
def A(f_ary, g_ary, n)
ary = [1]
a = [0] + (1..n).map{|i| s(f_ary, g_ary, i)}
(1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
ary
end
def A266971(n)
A((0..n).to_a, (0..n).map{|i| -i}, n)
end
p A266971(50) # Seiichi Manyama, Nov 18 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Jan 07 2016
STATUS
approved