login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266971 Expansion of Product_{k>=1} 1 / (1 + k*x^k)^k. 7
1, -1, -3, -6, 2, 9, 41, 46, 91, -110, -210, -713, -574, -1152, 792, 1066, 9317, 8553, 21302, 745, 8051, -82940, -76750, -276022, -82369, -404100, 381095, -38110, 2427272, 1126260, 6527840, 198507, 9754305, -14320206, 2879362, -60271740, -5154261, -143468194 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n > 36 is a(n) > 0 if n is even and a(n) < 0 if n is odd.

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = -n. - Seiichi Manyama, Nov 18 2017

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..6224 (terms 0..1000 from Vaclav Kotesovec)

FORMULA

a(n) ~ c * (-1)^n * n^2 * 3^(n/3), where

c = 50.5838262902886367070621... if mod(n,3)=0,

c = 50.5827771239052189170531... if mod(n,3)=1,

c = 50.5832885870455104598393... if mod(n,3)=2.

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(-d)^(n/d). - Seiichi Manyama, Nov 18 2017

MATHEMATICA

nmax=50; CoefficientList[Series[Product[1/(1+k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]

PROG

(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+k*x^k)^k)) \\ Seiichi Manyama, Nov 18 2017

(Ruby)

def s(f_ary, g_ary, n)

  s = 0

  (1..n).each{|i| s += i * f_ary[i] * g_ary[i] ** (n / i) if n % i == 0}

  s

end

def A(f_ary, g_ary, n)

  ary = [1]

  a = [0] + (1..n).map{|i| s(f_ary, g_ary, i)}

  (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}

  ary

end

def A266971(n)

  A((0..n).to_a, (0..n).map{|i| -i}, n)

end

p A266971(50) # Seiichi Manyama, Nov 18 2017

CROSSREFS

Cf. A022629, A022693, A266891, A266941, A266964.

Sequence in context: A205001 A154204 A309609 * A257106 A210187 A210189

Adjacent sequences:  A266968 A266969 A266970 * A266972 A266973 A266974

KEYWORD

sign

AUTHOR

Vaclav Kotesovec, Jan 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 10 15:45 EDT 2020. Contains 335577 sequences. (Running on oeis4.)