OFFSET
0,4
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
FORMULA
From Vaclav Kotesovec, Dec 15 2015: (Start)
a(n) ~ (-1)^n * c * 3^(n/3), where
c = 2.0319526534291644237634198503666896166412... if mod(n,3) = 0
c = 1.8420902462379331740718256785549611496880... if mod(n,3) = 1
c = 1.6677871810486313099783673373643842640151... if mod(n,3) = 2.
(End)
From Benedict W. J. Irwin, Mar 19 2017: (Start)
Conjecture: a(n) = Sum_{i_1,i_2,i_3,...}[(-1)^(i_1+i_2+i_3+...)*Product_{n>0} n^i_n], where the sum is over all valid sequences of positive i_k such that i_1+2*i_2+3*i_3+4*i_4+...= n.
Examples: Setting i_k=0 unless explicitly mentioned.
n=1, (i_1=1), a(1)= -1^1 = -1.
n=2, (i_1=2) or (i_2=1), a(2) = 1^2 - 2^1 = -1.
n=3, (i_1=3) or (i_1=1,i_2=1) or (i_3=1), a(3)=-1^3 + 1^1*2^1 - 3^1 = -2.
(End)
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/(1 + k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
nmax = 40; CoefficientList[Series[Exp[-Sum[(-1)^(j+1)*PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, 1/(1+n*q^n))) \\ G. C. Greubel, Feb 25 2018
(Magma) Coefficients(&*[1/(1+m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved