login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022693
Expansion of Product_{m>=1} 1/(1 + m*q^m).
12
1, -1, -1, -2, 2, -1, 4, -1, 18, -22, 12, -26, 67, -86, 42, -235, 432, -364, 506, -868, 1434, -2396, 2225, -3348, 10842, -11822, 8049, -24468, 36662, -40024, 69766, -96052, 171976, -278242, 251886, -419723, 885806, -998468, 1103660, -2381042, 4009539, -4478416, 6372514, -9913690
OFFSET
0,4
LINKS
FORMULA
From Vaclav Kotesovec, Dec 15 2015: (Start)
a(n) ~ (-1)^n * c * 3^(n/3), where
c = 2.0319526534291644237634198503666896166412... if mod(n,3) = 0
c = 1.8420902462379331740718256785549611496880... if mod(n,3) = 1
c = 1.6677871810486313099783673373643842640151... if mod(n,3) = 2.
(End)
From Benedict W. J. Irwin, Mar 19 2017: (Start)
Conjecture: a(n) = Sum_{i_1,i_2,i_3,...}[(-1)^(i_1+i_2+i_3+...)*Product_{n>0} n^i_n], where the sum is over all valid sequences of positive i_k such that i_1+2*i_2+3*i_3+4*i_4+...= n.
Examples: Setting i_k=0 unless explicitly mentioned.
n=1, (i_1=1), a(1)= -1^1 = -1.
n=2, (i_1=2) or (i_2=1), a(2) = 1^2 - 2^1 = -1.
n=3, (i_1=3) or (i_1=1,i_2=1) or (i_3=1), a(3)=-1^3 + 1^1*2^1 - 3^1 = -2.
(End)
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/(1 + k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
nmax = 40; CoefficientList[Series[Exp[-Sum[(-1)^(j+1)*PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, 1/(1+n*q^n))) \\ G. C. Greubel, Feb 25 2018
(Magma) Coefficients(&*[1/(1+m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
CROSSREFS
KEYWORD
sign
STATUS
approved