OFFSET
0,2
COMMENTS
FORMULA
T(0,0)=1, T(n,0)=2F(n) for n>=1, T(2k,k)=T(2k+1,k)=1 for k>=1, T(n,k)=F(n-2k) for 1<=k<(n-1)/2. G.f.=G(t,z)=(1+z-z^2-t*z^3)/[(1-z-z^2)(1-t*z^2)].
EXAMPLE
T(7,2)=2 because we have 1010110 and 1010111.
Triangle starts:
1;
2;
2,1;
4,1;
6,1,1;
10,2,1;
16,3,1,1;
26,5,2,1;
MAPLE
with(combinat): T:=proc(n, k) if k=0 and n=0 then 1 elif k=0 then 2*fibonacci(n) elif n=2*k or n=2*k+1 then 1 elif n>2*k+1 then fibonacci(n-2*k) else 0 fi end: for n from 0 to 18 do seq(T(n, k), k=0..floor(n/2)) od;
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 12 2007
STATUS
approved