The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052952 a(n) = Fibonacci(n+2) - (1-(-1)^n)/2. 35
 1, 1, 3, 4, 8, 12, 21, 33, 55, 88, 144, 232, 377, 609, 987, 1596, 2584, 4180, 6765, 10945, 17711, 28656, 46368, 75024, 121393, 196417, 317811, 514228, 832040, 1346268, 2178309, 3524577, 5702887, 9227464, 14930352, 24157816, 39088169, 63245985, 102334155 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equals row sums of triangle A173284. - Gary W. Adamson, Feb 14 2010 The Kn21 sums (see A180662 for definition) of the 'Races with Ties' triangle A035317 produce this sequence. - Johannes W. Meijer, Jul 20 2011 a(n-1), for n >= 1, gives the number of compositions of n with relative prime parts, and parts not exceeding 2. See the row sums of triangle A030528 where for even n the leading 1 is missing. - Wolfdieter Lang, Jul 27 2023 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1023 K. Kuhapatanakul, On the Sums of Reciprocal Generalized Fibonacci Numbers, J. Int. Seq. 16 (2013) #13.7.1, eq (1). Steven Linton, James Propp, Tom Roby, and Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), #12.9.1. H. Ohtsuka and S. Nakamura, On the sum of reciprocal sums of Fibonacci numbers, Fibonacci Quart. 46/47 (2008/2009), 153-159. Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1). FORMULA G.f.: 1/((1-x-x^2)*(1-x^2)). a(n) = A074331(n+1). a(n) = 2*a(n-2) + a(n-3) + 1, with a(0)=1, a(1)=1, a(2)=3. a(n) = Sum_{alpha=RootOf(-1+z+z^2)} (3+alpha)*alpha^(-1-n)/3 - Sum_{beta=RootOf(-1+z^2)} beta^(-1-n)/2. a(2*k) = Sum_{j=0..k} F(2*j+1) = F(2*(k+1)) for k >= 0; a(2*k-1) = Sum_{j=0..k} F(2*j) = F(2*k+1)-1 for k >= 1 (F = A000045, Fibonacci numbers). a(n) = a(n-1) + a(n-2) + (1+(-1)^n)/2. a(n) = Sum_{k=0..floor(n/2)) binomial(n-k+1, k). - Paul Barry, Oct 23 2004 a(n) = floor(phi^(n+2) / sqrt(5)), where phi is the golden ratio: phi = (1+sqrt(5))/2. - Reinhard Zumkeller, Apr 19 2005 a(n) = Fibonacci(n+1) + a(n-2) with n>1, a(0)=a(1)=1. - Zerinvary Lajos, Mar 17 2008 a(n) = floor(Fibonacci(n+3)^2/Fibonacci(n+4)). - Gary Detlefs, Nov 29 2010 a(n) = (A001595(n+3) - A066983(n+4))/2. - Gary Detlefs, Dec 19 2010 a(4*n) = F(4*n+2); a(4*n+1) = F(4*n+3) - 1; a(4*n+2) = F(4*n+4); a(4*n+3) = F(4*n+5) - 1. - Johannes W. Meijer, Jul 20 2011 a(n+1) = a(n) + a(n-1) + A059841(n+1). - Reinhard Zumkeller, Jan 06 2012 a(n) = floor(|F((1+i)*(n+2))|), n >= 0, with the complex Fibonacci function F: C -> C, z -> F(z) with F(z) := (exp(log(phi)*z) - exp(i*Pi*z)*exp(-log(phi)*z))/(2*phi-1) with the modulus |z|, the imaginary unit i and the golden section phi:=(1+sqrt(5))/2. A Conjecture: For F(z) see, e.g., the T. Koshy reference. ch. 45, p. 523, where F is called f, given in A000045. - Wolfdieter Lang, Jul 24 2012 5*a(n) = (L(n+3)-1)*(L(n+4)+3) -14 -Sum_{k=0..n} L(k+1)*L(k+5) = (L(n+3)-1)*(L(n+4)+3) -L(2*n+7) +A168309(n), where L=A000032. - J. M. Bergot, Jun 13 2014 a(n) = floor(phi*Fibonacci(n+1)), where phi is the golden section. - Michel Dekking, Dec 02 2016 a(n) = -(-1)^n * a(-4-n) for all n in Z. - Michael Somos, Dec 03 2016 a(n) = Sum_{k=0..n} Sum_{i=0..n} C(n-k-1,k-i). - Wesley Ivan Hurt, Sep 21 2017 a(n) = floor(1/(Sum_{k>=n+4} 1/Fibonacci(k))) [Ohtsuka and Nakamura]. - Michel Marcus, Aug 09 2018 a(n) = floor(abs(chebyshevU(n/2, 3/2))). - Federico Provvedi, Feb 23 2022 EXAMPLE G.f. = 1 + x + 3*x^2 + 4*x^3 + 8*x^4 + 12*x^5 + 21*x^6 + 33*x^7 + ... MAPLE A052952 :=proc(n) option remember; local t1; if n <= 1 then return 1 ; fi: if n mod 2 = 1 then t1:=0 else t1:=1; fi: procname(n-1)+procname(n-2)+t1; end proc; seq(A052952(n), n=0..40) ; # N. J. A. Sloane, May 25 2008 MATHEMATICA Table[Fibonacci[n+2] -(1-(-1)^n)/2, {n, 0, 40}] (* Vincenzo Librandi, Dec 02 2016 *) Sum[(-1)^k*Fibonacci[Range[2, 41], 1-k], {k, 0, 1}] (* G. C. Greubel, Oct 21 2019 *) CoefficientList[Series[1/((1-x-x^2)*(1-x^2)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 12 2020 *) PROG (PARI) {a(n) = fibonacci(n+2) - n%2}; (Haskell) a052952 n = a052952_list !! n a052952_list = 1 : 1 : zipWith (+) a059841_list (zipWith (+) a052952_list \$ tail a052952_list) -- Reinhard Zumkeller, Jan 06 2012 (Magma) [Fibonacci(n+2)-(1-(-1)^n)/2: n in [0..40]]; // Vincenzo Librandi, Dec 02 2016 (Sage) [fibonacci(n+2) -(1-(-1)^n)/2 for n in (0..40)] # G. C. Greubel, Jul 10 2019 (GAP) List([0..40], n-> Fibonacci(n+2) -(1-(-1)^n)/2); # G. C. Greubel, Jul 10 2019 CROSSREFS a(n) = A054450(n+1, 1) (second column of triangle). Cf. A062114, A173284, A059841, A014217, A180662, A035317. Partial sums of A008346, first differences of A129696. Cf. also A000032, A000045, A030528. Sequence in context: A147622 A173534 A074331 * A245121 A329730 A153339 Adjacent sequences: A052949 A052950 A052951 * A052953 A052954 A052955 KEYWORD nonn,easy AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS Additional formulas and more terms from Wolfdieter Lang, May 02 2000 Better description from Olivier Gérard, Jun 05 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 12:17 EDT 2023. Contains 365579 sequences. (Running on oeis4.)